Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physics

Recycled Sm-Co Bonded Magnet Filaments For 3d Printing Of Magnets, Helena A. Khazdozian, J. Sebastian Manzano, Kinjal Gandha, Igor I. Slowing, Ikenna C. Nlebedim Jan 2018

Recycled Sm-Co Bonded Magnet Filaments For 3d Printing Of Magnets, Helena A. Khazdozian, J. Sebastian Manzano, Kinjal Gandha, Igor I. Slowing, Ikenna C. Nlebedim

Ames Laboratory Accepted Manuscripts

Recycling of rare earth elements, such as Sm and Nd, is one technique towards mitigating long-term supply and cost concerns for materials and devices that depend on these elements. In this work recycled Sm-Co powder recovered from industrial grinding swarfs, or waste material from magnet processing, was investigated for use in preparation of filament for 3D printing of bonded magnets. Recycled Sm-Co powder recovered from swarfs was blended into polylactic acid (PLA). Up to 20 vol.% of the recycled Sm-Co in PLA was extruded at 160°C to produce a filament. It was demonstrated that no degradation of magnetic properties ...


Comparative Study Of Magnetic Properties Of Nanoparticles By High-Frequency Heat Dissipation And Conventional Magnetometry, V. Malik, J. Goodwill, Surya K. Mallapragada, Tanya Prozorov, Ruslan Prozorov Nov 2014

Comparative Study Of Magnetic Properties Of Nanoparticles By High-Frequency Heat Dissipation And Conventional Magnetometry, V. Malik, J. Goodwill, Surya K. Mallapragada, Tanya Prozorov, Ruslan Prozorov

Ames Laboratory Accepted Manuscripts

The rate of heating of 15 nm uniformly-sized magnetic aqueous nanoparticles suspension by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements of a frozen colloid by fitting field-dependent magnetization to a Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally ...


Variation Of Magnetostriction With Temperature In Tb5si2.2ge1.8 Single Crystal, A. P. Ring, H. L. Ziegler, Thomas A. Lograsso, Deborah L. Schlagel, J. E. Snyder, David C. Jiles Apr 2006

Variation Of Magnetostriction With Temperature In Tb5si2.2ge1.8 Single Crystal, A. P. Ring, H. L. Ziegler, Thomas A. Lograsso, Deborah L. Schlagel, J. E. Snyder, David C. Jiles

Ames Laboratory Conference Papers, Posters, and Presentations

The Tb5(SixGe4−x) alloy system is similar to the better known Gd5(SixGe4−x), except it has a more complex magnetic and structural phase diagram. Gd5(SixGe1−x)4 has received much attention recently due to its giant magnetocaloric effect, colossal magnetostriction and giant magnetoresistance in the vicinity of a first order combined magnetic-structural phase transition. The magnetostriction changes that accompany the phase transitions of single crystal Tb5(Si2.2Ge1.8) have been investigated at temperatures between 20 and150 K by measurements of ...


Magnetic Anisotropy And Phase Transitions In Single-Crystal Tb5(Si2.2ge1.8), M. Han, J. E. Snyder, W. Tang, Thomas A. Lograsso, Deborah L. Schlagel, David C. Jiles May 2005

Magnetic Anisotropy And Phase Transitions In Single-Crystal Tb5(Si2.2ge1.8), M. Han, J. E. Snyder, W. Tang, Thomas A. Lograsso, Deborah L. Schlagel, David C. Jiles

Ames Laboratory Conference Papers, Posters, and Presentations

The Tb5(SixGe4−x) alloy system has many features in common with the Gd5(SixGe4−x)system although it has a more complex magnetic and structural phase diagram. This paper reports on the magnetic anisotropy and magnetic phase transition of single-crystalTb5(Si2.2Ge1.8) which has been investigated by the measurements of M-H and M-T along the a, b, and c axes. The variation of 1/χ vs T indicates that there is a transition from paramagnetic to ferromagnetic at Tc = 110 K. Below this ...


Magnetic Field Induced Phase Transitions In Gd5(Si1.95ge2.05) Single Crystal And The Anisotropic Magnetocaloric Effect, H. Tang, A. O. Pecharsky, Deborah L. Schlagel, Thomas A. Lograsso, Vitalij K. Pecharsky, Karl A. Gschneidner Jr. May 2003

Magnetic Field Induced Phase Transitions In Gd5(Si1.95ge2.05) Single Crystal And The Anisotropic Magnetocaloric Effect, H. Tang, A. O. Pecharsky, Deborah L. Schlagel, Thomas A. Lograsso, Vitalij K. Pecharsky, Karl A. Gschneidner Jr.

Ames Laboratory Conference Papers, Posters, and Presentations

Magnetization measurements using a Gd5(Si1.95Ge2.05) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as a function of the applied field (0–56 kOe) at various temperatures (∼5–320 K). The magnetic field (H)–temperature (T) phase diagrams were constructed for theGd5(Si1.95Ge2.05) single crystal with field along the three directions. A small anisotropy was observed. The magnetocaloric effect was calculated from isothermal magnetization data, and the observed anisotropy correlates with the HT phase diagrams. The results ...


An Extended Model Of The Barkhausen Effect Based On The Abbm Model, D. M. Clatterbuck, V. J. Garcia, M. J. Johnson, David C. Jiles May 2000

An Extended Model Of The Barkhausen Effect Based On The Abbm Model, D. M. Clatterbuck, V. J. Garcia, M. J. Johnson, David C. Jiles

Ames Laboratory Publications

The Barkhausen model of Alessandro et al. [J. Appl. Phys. 68, 2901 (1990)] has been extended to nonstationary domain walldynamics. The assumptions of the original model limit, its use to situations where the differential permeability, and time derivative of applied field are constant. The later model of Jiles et al. assumes that the Barkhausen activity in a given time interval is proportional to the rate of change of irreversible magnetization which can be calculated from hysteresis models. The extended model presented here incorporates ideas from both of these. It assumes that the pinning field and domain wall velocity behave according ...


Application Of The Preisach And Jiles–Atherton Models To The Simulation Of Hysteresis In Soft Magnetic Alloys, M. Pasquale, G. Bertotti, David C. Jiles, Y. Bi Apr 1999

Application Of The Preisach And Jiles–Atherton Models To The Simulation Of Hysteresis In Soft Magnetic Alloys, M. Pasquale, G. Bertotti, David C. Jiles, Y. Bi

Ames Laboratory Publications

his article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles–Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si–Fe steels with variable grain size ⟨s⟩, and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe–Si, the modeling parameter k defined by the volume ...


Monitoring Fatigue Damage In Materials Using Magnetic Measurement Techniques, Chester C.H. Lo, F. Tang, Y. Shi, David C. Jiles, S. B. Biner Apr 1999

Monitoring Fatigue Damage In Materials Using Magnetic Measurement Techniques, Chester C.H. Lo, F. Tang, Y. Shi, David C. Jiles, S. B. Biner

Center for Nondestructive Evaluation Publications

Measurements of hysteresis and Barkhausen effect (BE) have been made on 0.1 wt % C Fe–C alloys subjected to strain-controlled fatigue at various strain amplitudes. A relationship between the fatigue lifetime and strain amplitude was observed. The hysteresis properties of the samples cycled at different strain amplitudes were found to vary systematically with expended fatigue life. These properties showed significant changes in the initial and final stages of fatigue, while between these stages they remained stabilized. In the stable stage the remanence was found to decrease, whereas the coercivity increased with increasing strain amplitude. Variations in BE signal during ...


Domain-Wall Motion In Random Potential And Hysteresis Modeling, M. Pasquale, V. Basso, G. Bertotti, David C. Jiles, Y. Bi Jun 1998

Domain-Wall Motion In Random Potential And Hysteresis Modeling, M. Pasquale, V. Basso, G. Bertotti, David C. Jiles, Y. Bi

Ames Laboratory Publications

Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles–Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present.


Generalization Of Hysteresis Modeling To Anisotropic Materials, A. Ramesh, David C. Jiles, Y. Bi Apr 1997

Generalization Of Hysteresis Modeling To Anisotropic Materials, A. Ramesh, David C. Jiles, Y. Bi

Materials Science and Engineering Publications

An extension to the model of hysteresis has been presented earlier which included the effect of anisotropy in the modeling of the anhysteretic magnetization curves of uniaxially anisotropic single crystalline materials. Further exploration of this extension shown here considers different kinds of crystal anisotropy in materials. Theory considers that the differential susceptibility at any given field is determined by the displacement of the prevailing magnetization from the anhysteretic magnetization. Thus, it has been shown that the effect of anisotropy on magnetic hysteresis in materials can be incorporated into the model of hysteresis through the anisotropic anhysteretic. This extension is likely ...


Modeling Of Permanent Magnets: Interpretation Of Parameters Obtained From The Jiles–Atherton Hysteresis Model, L. H. Lewis, J. Gao, David C. Jiles, D. O. Welch Apr 1996

Modeling Of Permanent Magnets: Interpretation Of Parameters Obtained From The Jiles–Atherton Hysteresis Model, L. H. Lewis, J. Gao, David C. Jiles, D. O. Welch

Ames Laboratory Publications

The Jiles–Atherton theory is based on considerations of the dependence of energy dissipation within a magnetic material resulting from changes in its magnetization. The algorithm based on the theory yields five computed model parameters, M S , a, α, k, and c, which represent the saturation magnetization, the effective domain density, the mean exchange coupling between the effective domains, the flexibility of domain walls and energy‐dissipative features in the microstructure, respectively. Model parameters were calculated from the algorithm and linked with the physical attributes of a set of three related melt‐quenched permanent magnets based on the Nd2 ...


Dependence Of Energy Dissipation On Annealing Temperature Of Melt–Spun Ndfeb Permanent Magnet Materials, Z. Gao, David C. Jiles, Daniel J. Branagan, R. William Mccallum Apr 1996

Dependence Of Energy Dissipation On Annealing Temperature Of Melt–Spun Ndfeb Permanent Magnet Materials, Z. Gao, David C. Jiles, Daniel J. Branagan, R. William Mccallum

Ames Laboratory Publications

A model of magnetic hysteresis which was developed originally for soft magnetic materials has been applied to melt–spun ribbons of Nd2Fe14B‐based material. The crucial ideas in the model description of hysteresis center on a dissipation of energy due to hysteresis which is proportional to the change in magnetization. The Nd2Fe14B material was melt–spun amorphous and then annealed for a period of 24 h at temperatures ranging from 700 to 950 °C. This resulted in different grain sizes, depending on annealing temperature. Consequently the hysteresis curves represent the properties of ...


Recent Developments In Modeling Of The Stress Derivative Of Magnetization In Ferromagnetic Materials, David C. Jiles, Michael K. Devine Nov 1994

Recent Developments In Modeling Of The Stress Derivative Of Magnetization In Ferromagnetic Materials, David C. Jiles, Michael K. Devine

Ames Laboratory Publications

The effect of changing stress on the magnetization of ferromagnetic materials leads to behavior in which the magnetization may increase, or decrease, when exposed to the same stress under the same external conditions. A simple empirical law seems to govern the behavior when the magnetization begins from a major hysteresis loop. The application of the law of approach, in which the derivative of the magnetization with respect to the elastic energy supplied dM/dW is proportional to the magnetization displacement M anM, is discussed.


Frequency Dependence Of Hysteresis Curves In Conducting Magnetic Materials, David C. Jiles Nov 1994

Frequency Dependence Of Hysteresis Curves In Conducting Magnetic Materials, David C. Jiles

Ames Laboratory Publications

An extension of the hysteresis model has been developed that takes into account the effects on the hysteresis curves of eddycurrents in electrically conducting media. In the derivation presented it is assumed that the frequency of the applied field is low enough (or the thickness of the material medium small enough) that the skin effect can be ignored so that the magnetic field penetrates uniformly throughout the material. In this case, the dc hysteresis equation is extended by the addition of a classical eddy‐current‐loss term depending on (i) the rate of change of magnetization with time, (ii) the ...


Enhanced Differential Magnetostrictive Response In Annealed Terfenol‐D, N. Galloway, M. P. Schulze, R. D. Greenough, David C. Jiles Aug 1993

Enhanced Differential Magnetostrictive Response In Annealed Terfenol‐D, N. Galloway, M. P. Schulze, R. D. Greenough, David C. Jiles

Ames Laboratory Publications

The field and pressure dependencies of the magnetostriction of Tb0.316Dy0.684Fe1.982 have been measured in a grain‐oriented rod after thermally annealing for 1 day at 850 °C and for 4 days at 950 °C in an argon atmosphere. The results of the heat treatment are a fivefold increase in the strain coefficient d 33(=dλ/dH) and a 100% increase in the maximum strain (λ). There was also an increase in the λ‐vs‐Hhysteresis. Under compressive uniaxial stress there was virtually no bulk change in magnetostrictive strain until the ...


A Model For Hysteretic Magnetic Properties Under The Application Of Noncoaxial Stress And Field, Martin J. Sablik, S. W. Rubin, L. A. Riley, David C. Jiles, David A. Kaminski, S. B. Biner Jul 1993

A Model For Hysteretic Magnetic Properties Under The Application Of Noncoaxial Stress And Field, Martin J. Sablik, S. W. Rubin, L. A. Riley, David C. Jiles, David A. Kaminski, S. B. Biner

Center for Nondestructive Evaluation Publications

Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The ...


Modeling Of Micromagnetic Barkhausen Activity Using A Stochastic Process Extension To The Theory Of Hysteresis, David C. Jiles, Levent B. Sipahi, G. Williams May 1993

Modeling Of Micromagnetic Barkhausen Activity Using A Stochastic Process Extension To The Theory Of Hysteresis, David C. Jiles, Levent B. Sipahi, G. Williams

Materials Science and Engineering Publications

Recent work by Bertotti [IEEE Trans. Magn. MAG‐24, 621 (1988)] and others has shown that it is possible to model the micromagnetic Barkhausen discontinuities at the coercive point using a two‐parameter stochastic model. However, the present formulation of the model is restricted to limited regions of the hysteresis curve over which dM/dH is approximately constant and whendH/dt is held at a constant rate. A natural extension of this model is to take the basic result, in which the level of Barkhausen activity in one time period is related to the activity in the previous time ...