Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Series

Physics and Astronomy Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 502

Full-Text Articles in Physics

Measurement Of Charm And Bottom Production From Semileptonic Hadron Decays In P + P Collisions At √S = 200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Yunxiao Zhai, Et Al., Phenix Collaboration May 2019

Measurement Of Charm And Bottom Production From Semileptonic Hadron Decays In P + P Collisions At √S = 200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Yunxiao Zhai, Et Al., Phenix Collaboration

Physics and Astronomy Publications

Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in p+p collisions at √s=200  GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in p+p collisions provide a precision baseline for comparable forthcoming measurements in A+A collisions.


Measurement Of Two-Particle Correlations With Respect To Second- And Third-Order Event Planes In Au + Au Collisions At √Snn=200 Gev, A. Adare, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Alexey Yu. Semenov, M. Shimomura, Carla Vale, Feng Wei, Et Al., Phenix Collaboration May 2019

Measurement Of Two-Particle Correlations With Respect To Second- And Third-Order Event Planes In Au + Au Collisions At √Snn=200 Gev, A. Adare, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Alexey Yu. Semenov, M. Shimomura, Carla Vale, Feng Wei, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We present measurements of azimuthal correlations of charged hadron pairs in root s(NN) = 200 GeV Au + Au collisions for the trigger and associated particle transverse-momentum ranges of 1 < p(T)(t) < 10 GeV/c and 0.5 < p(T)(a) < 10 GeV/c. After subtraction of an underlying event using a model that includes higher-order azimuthal anisotropy v(2), v(3,) and v(4), the away-side yield of the highest trigger-p(T)(p(T)(t) > 4 GeV/c) correlations is suppressed compared with that of correlations measured in p + p collisions. At the lowest associated particle p(T)(0.5 < p(T)(a) < 1 GeV/c), the away-side shape and yield are modified relative to those in p + p collisions. These observations are consistent with the scenario of radiative-jet energy loss. For the low-p(T) trigger correlations (2 < p(T)(t) < 4 GeV/c), a finite away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle Psi(2) and Psi(3). The angular correlations show an asymmetry when selecting the sign of the difference between the trigger-particle azimuthal angle and the Psi(2) event plane. This asymmetry and the measured suppression of the pair yield out-of-plane is consistent with a path-length-dependent energy loss. No Psi(3) dependence can be resolved within experimental uncertainties.


Nonperturbative-Transverse-Momentum Broadening In Dihadron Angular Correlations In √Snn = 200 Gev Proton-Nucleus Collisions, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Apr 2019

Nonperturbative-Transverse-Momentum Broadening In Dihadron Angular Correlations In √Snn = 200 Gev Proton-Nucleus Collisions, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au collisions at √sNN=200 GeV. The correlations arise from inter- and intrajet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of pout, the transverse-momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial- and final-state transverse momenta. These distributions are measured multidifferentially as a function of xE, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse momentum ...


Measurements Of Μμ Pairs From Open Heavy Flavor And Drell-Yan In P + P Collisions At √S = 200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Apr 2019

Measurements Of Μμ Pairs From Open Heavy Flavor And Drell-Yan In P + P Collisions At √S = 200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

PHENIX reports differential cross sections of mu mu pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p + p collisions at root s = 200 GeV at forward and backward rapidity (1.2 < vertical bar eta vertical bar < 2.2). The mu mu pairs from c (c) over bar, b (b) over bar, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and p(T). The azimuthal opening angle correlation between the muons from c (c ) over bar and b (b) over bar decays and the pair-p(T) distributions are compared to distributions generated using PYTHIA and POWHEG models, which both include next-to-leading order processes. The measured distributions for pairs from a are consistent with PYTHIA calculations. The c (c) over bar data present narrower azimuthal correlations and softer p(T) distributions compared to distributions generated from POWHEG. The b (b ) over bar data are well described by both models. The extrapolated total cross section for bottom production is 3.75 +/- 0.24(stat) +/-(0.35)(0.50) (syst) +/- 0.45(global) [mu b], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations.


Intertwined Vestigial Order In Quantum Materials: Nematicity And Beyond, Rafael M. Fernandes, Peter P. Orth, Jorg Schmalian Mar 2019

Intertwined Vestigial Order In Quantum Materials: Nematicity And Beyond, Rafael M. Fernandes, Peter P. Orth, Jorg Schmalian

Physics and Astronomy Publications

A hallmark of the phase diagrams of quantum materials is the existence of multiple electronic ordered states, which, in many cases, are not independent competing phases, but instead display a complex intertwinement. In this review, we focus on a particular realization of intertwined orders: a primary phase characterized by a multi-component order parameter and a fluctuation-driven vestigial phase characterized by a composite order parameter. This concept has been widely employed to elucidate nematicity in iron-based and cuprate superconductors. Here we present a group-theoretical framework that extends this notion to a variety of phases, providing a classification of vestigial orders of ...


Creation Of Quark–Gluon Plasma Droplets With Three Distinct Geometries, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Mar 2019

Creation Of Quark–Gluon Plasma Droplets With Three Distinct Geometries, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

Experimental studies of the collisions of heavy nuclei at relativistic energies have established the properties of the quark–gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons 1–4 . In this state, matter behaves as a nearly inviscid fluid 5 that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the particles produced, creating a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton–proton (p+p) and proton–nucleus (p+A) collisions, despite expectations that the ...


Multiparticle Azimuthal Correlations For Extracting Event-By-Event Elliptic And Triangular Flow In Au + Au Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Feb 2019

Multiparticle Azimuthal Correlations For Extracting Event-By-Event Elliptic And Triangular Flow In Au + Au Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at √sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed.


Photon Radiation In Hot Nuclear Matter By Means Of Chiral Anomalies, Kirill Tuchin Jan 2019

Photon Radiation In Hot Nuclear Matter By Means Of Chiral Anomalies, Kirill Tuchin

Physics and Astronomy Publications

A new mechanism of photon emission in the quark-gluon plasma is proposed. Photon dispersion relation in the presence of the CP-odd topological regions generated by the chiral anomaly acquires an imaginary mass. It allows photon radiation through the decay q→qγ and annihilation qq¯→γ processes closely related to the chiral Cherenkov radiation. Unlike previous proposals this mechanism does not require an external magnetic field. The differential photon emission rate per unit volume is computed and shown to be comparable to the rate of photon emission in conventional processes.


Beam-Energy And Centrality Dependence Of Direct-Photon Emission From Ultra-Relativistic Heavy-Ion Collisions, A. Adare, Nicole J. Apadula, Sergey Belikov, Paul Constantin, Lei Ding, Alan Dion, Nathan C. Grau, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Jan Rak, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Alexey Yu. Semenov, Abhisek Sen, M. Shimomura, C. L. Silva, S. Skutnik, Carla Vale, Feng Wei, Et Al., Phenix Collaboration Jan 2019

Beam-Energy And Centrality Dependence Of Direct-Photon Emission From Ultra-Relativistic Heavy-Ion Collisions, A. Adare, Nicole J. Apadula, Sergey Belikov, Paul Constantin, Lei Ding, Alan Dion, Nathan C. Grau, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Jan Rak, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Alexey Yu. Semenov, Abhisek Sen, M. Shimomura, C. L. Silva, S. Skutnik, Carla Vale, Feng Wei, Et Al., Phenix Collaboration

Physics and Astronomy Publications

The PHENIX collaboration presents first measurements of low-momentum (0.41\,GeV/c) direct-photon yield dNdirγ/dη is a smooth function of dNch/dη and can be well described as proportional to (dNch/dη)α with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, A+A collision systems. At a given beam energy the scaling also holds for high pT (>5\,GeV/c) but when results from different collision energies are compared, an additional sNN ...


Correlations Of Μμ, Eμ, And Ee Pairs In P+P Collisions At S√=200 Gev And Implications For Cc¯ And Bb¯ Production Mechanisms, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Jan 2019

Correlations Of Μμ, Eμ, And Ee Pairs In P+P Collisions At S√=200 Gev And Implications For Cc¯ And Bb¯ Production Mechanisms, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

PHENIX has measured the azimuthal correlations of muon pairs from charm and bottom semi-leptonic decays in p+p collisions at s√=200 GeV, using a novel analysis technique utilizing both unlike- and like-sign muon pairs to separate charm, bottom and Drell-Yan contributions. The dimuon measurements combined with the previous electron-muon and dielectron measurements span a wide range in rapidity, and are well described by PYTHIA Tune A. Through a Bayesian analysis based on PYTHIA Tune A, we show that leading order pair creation is the dominant (76%±1419%) contribution for bb¯ production, whereas the data favor the scenario in which ...


Chiral Cherenkov And Chiral Transition Radiation In Anisotropic Matter, Kirill Tuchin Dec 2018

Chiral Cherenkov And Chiral Transition Radiation In Anisotropic Matter, Kirill Tuchin

Physics and Astronomy Publications

A significant contribution to the electromagnetic radiation by a fast electric charge moving in anisotropic chiral matter arises from spontaneous photon radiation due to the chiral anomaly. While such a process, also known as the “vacuum Cherenkov radiation,” is forbidden in the QED vacuum, it can occur in chiral matter, where it is more appropriate to call it the “chiral Cherenkov radiation.” Its contribution to the radiation spectrum is of order α2 compared to α3 of the bremsstrahlung. I derive the frequency spectrum and the angular distribution of this radiation in the high energy limit. The quantum effects ...


Radiative Instability Of Quantum Electrodynamics In Chiral Matter, Kirill Tuchin Nov 2018

Radiative Instability Of Quantum Electrodynamics In Chiral Matter, Kirill Tuchin

Physics and Astronomy Publications

Modification of the photon dispersion relation in chiral matter enables 1 -> 2 scattering. As a result, the single fermion and photon states are unstable to photon radiation and pair production respectively. In particular, a fast fermion moving through chiral matter can spontaneously radiate a photon, while a photon can spontaneously radiate a fast fermion and anti-fermion pair. The corresponding spectra are derived in the ultra-relativistic approximation. It is shown that the polarization of the produced and decayed photons is determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the spectra is computed.


Transition Radiation As A Probe Of The Chiral Anomaly, Xu-Guang Huang, Kirill Tuchin Nov 2018

Transition Radiation As A Probe Of The Chiral Anomaly, Xu-Guang Huang, Kirill Tuchin

Physics and Astronomy Publications

A fast charged particle crossing the boundary between chiral matter and vacuum radiates transition radiation. Its most remarkable features—the resonant behavior at a certain emission angle and the circular polarization of the spectrum—depend on the parameters of the chiral anomaly in a particular material or matter. Chiral transition radiation can be used to investigate the chiral anomaly in such diverse media as the quark-gluon plasma, Weyl semimetals, and axionic dark matter.


Pseudorapidity Dependence Of Particle Production And Elliptic Flow In Asymmetric Nuclear Collisions Of P + Al, P + Au, D + Au, And 3he + Au At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Nov 2018

Pseudorapidity Dependence Of Particle Production And Elliptic Flow In Asymmetric Nuclear Collisions Of P + Al, P + Au, D + Au, And 3he + Au At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and 3He+Au at √sNN=200  GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dNch/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v2 over a similarly broad pseudorapidity range. These measurements provide key constraints on models ...


Production Of Π0 And Η Mesons In Cu + Au Collisions At √Snn = 200 Gev, C. Aidala, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, Alex Shaver, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration Nov 2018

Production Of Π0 And Η Mesons In Cu + Au Collisions At √Snn = 200 Gev, C. Aidala, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, Alex Shaver, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration

Physics and Astronomy Publications

Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at √sNN=200 GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)−20 GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling ...


Low-Momentum Direct-Photon Measurement In Cu + Cu Collisions At √Snn = 200 Gev, A. Adare, Nathan C. Grau, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, M. Shimomura, S. Skutnik, Carla Vale, Feng Wei, Et Al., Phenix Collaboration Nov 2018

Low-Momentum Direct-Photon Measurement In Cu + Cu Collisions At √Snn = 200 Gev, A. Adare, Nathan C. Grau, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, M. Shimomura, S. Skutnik, Carla Vale, Feng Wei, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We measured direct photons for pT<5GeV/c in minimum bias and 0%–40% most-central events at midrapidity for Cu+Cu collisions at √sNN=200 GeV. The e+e− contribution from quasireal direct virtual photons has been determined as an excess over the known hadronic contributions in the e+e−mass distribution. A clear enhancement of photons over the binary scaled p+p fit is observed for pT<4 GeV/c in Cu+Cu data. The pT spectra are consistent with the Au+Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the p+p baseline are 285±53(stat)±57(syst)MeV/c and 333±72(stat)±45(syst)MeV/c for minimum bias and 0%–40% most-central events, respectively. The rapidity density, dN/dy, of photons demonstrates the same power law as a function of dNch/dη observed in Au+Au at the same collision energy.


Measurement Of Φ-Meson Production At Forward Rapidity In P+P Collisions At √S=510 Gev And Its Energy Dependence From √S=200 Gev To 7 Tev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration Nov 2018

Measurement Of Φ-Meson Production At Forward Rapidity In P+P Collisions At √S=510 Gev And Its Energy Dependence From √S=200 Gev To 7 Tev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration

Physics and Astronomy Publications

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of phi(1020)-meson production at forward rapidity in p + p collisions at root s = 510 GeV via the dimuon decay channel. The partial cross section in the rapidity and P-T ranges 1.2 < vertical bar y vertical bar < 2.2 and 2 < p(T) < 7 GeV/c is sigma(phi) = [2.28 +/- 0.09(stat) +/- 0.14(syst) +/- 0.27(norm)] x 10(-2) mb. The energy dependence of sigma(phi) (1.2 < vertical bar y vertical bar < 2.2,2 < p(T) < 5 GeV/c) is studied using the PHENIX measurements at root s = 200 and 510 GeV and the Large Hadron Collider measurements atroot s = 2.76 and 7 TeV. The experimental results arc compared to various event generator predictions (PYTHIA6, PYTHIA8, PHOJET, AMPT, EPOS3, and EPOS-LHC).


Driven Dissipative Dynamics And Topology Of Quantum Impurity Systems, Karyn Le Hur, Loïc Henriet, Loïc Herviou, Kirill Plekhanov, Alexandru Petrescu, Tal Goren, Marco Schiro, Christophe Mora, Peter P. Orth Sep 2018

Driven Dissipative Dynamics And Topology Of Quantum Impurity Systems, Karyn Le Hur, Loïc Henriet, Loïc Herviou, Kirill Plekhanov, Alexandru Petrescu, Tal Goren, Marco Schiro, Christophe Mora, Peter P. Orth

Physics and Astronomy Publications

In this review, we provide an introduction to and an overview of some more recent advances in real-time dynamics of quantum impurity models and their realizations in quantum devices. We focus on the Ohmic spin–boson and related models, which describe a single spin-1/2 coupled with an infinite collection of harmonic oscillators. The topics are largely drawn from our efforts over the past years, but we also present a few novel results. In the first part of this review, we begin with a pedagogical introduction to the real-time dynamics of a dissipative spin at both high and low temperatures ...


Cross Section And Longitudinal Single-Spin Asymmetry Al For Forward W± → Μ±Ν Production In Polarized P+P Collisions At √S=510 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, Alex Shaver, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration Aug 2018

Cross Section And Longitudinal Single-Spin Asymmetry Al For Forward W± → Μ±Ν Production In Polarized P+P Collisions At √S=510 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, Lei Ding, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, Alex Shaver, M. Shimomura, Arbin Timilsina, Shawn Whitaker, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We have measured the cross section and single-spin asymmetries from forward W±→μ±ν production in longitudinally polarized p+p collisions at √s=510  GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons.


Emergent Magnetic Degeneracy In Iron Pnictides Due To The Interplay Between Spin-Orbit Coupling And Quantum Fluctuations, Morten H. Christensen, Peter P. Orth, Brian M. Andersen, Rafael M. Fernandes Jul 2018

Emergent Magnetic Degeneracy In Iron Pnictides Due To The Interplay Between Spin-Orbit Coupling And Quantum Fluctuations, Morten H. Christensen, Peter P. Orth, Brian M. Andersen, Rafael M. Fernandes

Physics and Astronomy Publications

Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical point is approached, different types of magnetic order coexist over a narrow region of the phase diagram. Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum ...


Hadron Spectra, Decays And Scattering Properties Within Basis Light Front Quantization, James P. Vary, Lekha Adhikari, Guangyao Chen, Shaoyang Jia, Meijian Li, Yang Li, Pieter Maris, Wenyang Qian, John R. Spence, Shuo Tang, Kirill Tuchin, Anji Yu, Xingbo Zhao Jul 2018

Hadron Spectra, Decays And Scattering Properties Within Basis Light Front Quantization, James P. Vary, Lekha Adhikari, Guangyao Chen, Shaoyang Jia, Meijian Li, Yang Li, Pieter Maris, Wenyang Qian, John R. Spence, Shuo Tang, Kirill Tuchin, Anji Yu, Xingbo Zhao

Physics and Astronomy Publications

We survey recent progress in calculating properties of the electron and hadrons within the basis light front quantization (BLFQ) approach. We include applications to electromagnetic and strong scattering processes in relativistic heavy ion collisions. We present an initial investigation into the glueball states by applying BLFQ with multigluon sectors, introducing future research possibilities on multi-quark and multi-gluon systems.


Magnetic Phase Diagram Of The Iron Pnictides In The Presence Of Spin-Orbit Coupling: Frustration Between C2 And C4 Magnetic Phases, Morten H. Christensen, Peter P. Orth, Brian M. Andersen, Rafael M. Fernandes Jul 2018

Magnetic Phase Diagram Of The Iron Pnictides In The Presence Of Spin-Orbit Coupling: Frustration Between C2 And C4 Magnetic Phases, Morten H. Christensen, Peter P. Orth, Brian M. Andersen, Rafael M. Fernandes

Physics and Astronomy Publications

We investigate the impact of spin anisotropic interactions, promoted by spin-orbit coupling, on the magnetic phase diagram of the iron-based superconductors. Three distinct magnetic phases with Bragg peaks at (π,0) and (0,π) are possible in these systems: one C2 (i.e. orthorhombic) symmetric stripe magnetic phase and two C4 (i.e. tetragonal) symmetric magnetic phases. While the spin anisotropic interactions allow the magnetic moments to point in any direction in the C2 phase, they restrict the possible moment orientations in the C4 phases. As a result, an interesting scenario arises in which the spin anisotropic interactions favor a ...


Measurement Of Emission-Angle Anisotropy Via Long-Range Angular Correlations With High-Pt Hadrons In D + Au And P + P Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Alan Dion, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, C. L. Silva, Arbin Timilsina, Feng Wei, Et Al., Phenix Collaboration Jul 2018

Measurement Of Emission-Angle Anisotropy Via Long-Range Angular Correlations With High-Pt Hadrons In D + Au And P + P Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Alan Dion, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, C. L. Silva, Arbin Timilsina, Feng Wei, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We present measurements of two-particle angular correlations between high-transverse-momentum (2 < pT < 11 GeV/c) pi(0) observed at midrapidity (|eta| < 0.35) and particles produced either at forward (3.1 < eta < 3.9) or backward (-3.7 < eta < -3.1) rapidity in d + Au and p + p collisions at root s(NN) = 200 GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a characteristic structure that persists up to pT approximate to 6 GeV/c and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A + A collisions. The structure is absent in the d-going direction as well as in p + p collisions, in the transverse-momentum range studied. The results indicate that the structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.


Single-Spin Asymmetry Of J/Ψ Production In P+P, P+Al, And P+Au Collisions With Transversely Polarized Proton Beams At √Snn=200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Jul 2018

Single-Spin Asymmetry Of J/Ψ Production In P+P, P+Al, And P+Au Collisions With Transversely Polarized Proton Beams At √Snn=200 Gev, C. Aidala, Nicole J. Apadula, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We report the transverse single-spin asymmetries of J/ψ production at forward and backward rapidity, 1.2<|y|<2.2, as a function of J/ψ transverse momentum (pT) and Feynman-x (xF). The data analyzed were recorded by the PHENIX experiment at the Relativistic Heavy Ion Collider in 2015 from p+p, p+Al, and p+Au collisions with transversely polarized proton beams at √sNN=200  GeV. At this collision energy, single-spin asymmetries for heavy-flavor particle production of p+p collisions provide access to the spin-dependent gluon distribution and higher-twist correlation functions inside the nucleon, such as the gluon Qiu-Sterman and trigluon correlation functions. Proton+nucleus collisions offer an excellent opportunity to study nuclear effects on the correlation functions. The data indicate a positive asymmetry at the two-standard-deviation level in the p+p data for 2  GeV/c


Impact Of Domain Walls On The Chiral Magnetic Effect In Hot Qcd Matter, Kirill Tuchin Jun 2018

Impact Of Domain Walls On The Chiral Magnetic Effect In Hot Qcd Matter, Kirill Tuchin

Physics and Astronomy Publications

The chiral magnetic effect (CME)—the separation of positive and negative electric charges along the direction of the external magnetic field in quark-gluon plasma and other topologically nontrivial media—is a consequence of the coupling of electrodynamics to the topological gluon field fluctuations that form metastable CP-odd domains. In phenomenological models it is usually assumed that the domains are uniform and the influence of the domain walls on the electric current flow is not essential. This article challenges the latter assumption. A simple model consisting of a uniform spherical domain in a uniform time-dependent magnetic field is introduced and ...


Lévy-Stable Two-Pion Bose-Einstein Correlations In √Snn = 200 Gev Au + Au Collisions, A. Adare, Nicole J. Apadula, Lei Ding, Alan Dion, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, C. L. Silva, Arbin Timilsina, Feng Wei, Et Al., Phenix Collaboration Jun 2018

Lévy-Stable Two-Pion Bose-Einstein Correlations In √Snn = 200 Gev Au + Au Collisions, A. Adare, Nicole J. Apadula, Lei Ding, Alan Dion, John C. Hill, Nels J. Hotvedt, Todd Kempel, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, H. Pei, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, C. L. Silva, Arbin Timilsina, Feng Wei, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We present a detailed measurement of charged two-pion correlation functions in 0-30% centrality root= 200 GeV Au+Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from Levy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter lambda, the Levy index of stability alpha, and the Levy length scale parameter R as a function of average transverse mass of the parr m(T). We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are ...


Measurements Of Mass-Dependent Azimuthal Anisotropy In Central P + Au, D + Au, And 3he + Au Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration Jun 2018

Measurements Of Mass-Dependent Azimuthal Anisotropy In Central P + Au, D + Au, And 3he + Au Collisions At √Snn = 200 Gev, A. Adare, Nicole J. Apadula, Sarah C. Campbell, John C. Hill, Nels J. Hotvedt, John G. Lajoie, Alexandre Lebedev, S. H. Lee, Craig Ogilvie, Milap R. Patel, Joshua Perry, Timothy T. Rinn, Marzia Rosati, Jonathan C. Runchey, Abhisek Sen, M. Shimomura, Arbin Timilsina, Et Al., Phenix Collaboration

Physics and Astronomy Publications

We present measurements of the transverse-momentum dependence of elliptic flow upsilon(2) for identified pions and (anti)protons at midrapidity (vertical bar eta vertical bar < 0.35), in 0%-5% central p + Au and He-3 + Au collisions at ,root s(NN) = 200 GeV. When taken together with previously published measurements in d + Au collisions at root s(NN) = 200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of upsilon(2) (p(T)) in d + Au and He-3 + Au collisions, just as in large nucleus-nucleus (A + A) collisions, and a smaller splitting in p + Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low p(T) (<1.5 GeV/c), but fail to describe various features at higher p(T). In all systems, the upsilon(2) values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (KET/n(q)), which was also seen previously in A + A collisions.


Phase Field Study Of Surface-Induced Melting And Solidification From A Nanovoid: Effect Of Dimensionless Width Of Void Surface And Void Size, Anup Basak, Valery I. Levitas May 2018

Phase Field Study Of Surface-Induced Melting And Solidification From A Nanovoid: Effect Of Dimensionless Width Of Void Surface And Void Size, Anup Basak, Valery I. Levitas

Physics and Astronomy Publications

The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ⎯⎯⎯, are found for the nanovoids of different sizes. Below a critical ratio ...


Magnetic Field In Expanding Quark-Gluon Plasma, Evan Stewart, Kirill Tuchin Apr 2018

Magnetic Field In Expanding Quark-Gluon Plasma, Evan Stewart, Kirill Tuchin

Physics and Astronomy Publications

Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in ...


The Impact Of Domain Walls On The Chiral Magnetic Effect In Hot Qcd Matter, Kirill Tuchin Feb 2018

The Impact Of Domain Walls On The Chiral Magnetic Effect In Hot Qcd Matter, Kirill Tuchin

Physics and Astronomy Publications

The Chiral Magnetic Effect (CME) -- the separation of positive and negative electric charges along the direction of the external magnetic field in quark-gluon plasma and other topologically non-trivial media -- is a consequence of the coupling of electrodynamics to the topological gluon field fluctuations that form metastable CP-odd domains. In phenomenological models it is usually assumed that the domains are uniform and the influence of the domain walls on the electric current flow is not essential. This paper challenges the latter assumption. A simple model consisting of a uniform spherical domain in a uniform time-dependent magnetic field is introduced and analytically ...