Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 72

Full-Text Articles in Physics

Sulfur Adsorption On Coinage Metal (100) Surfaces: Propensity For Metal-Sulfur Complex Formation Relative To (111) Surfaces, Da-Jiang Liu, Peter M. Spurgeon, Jiyoung Lee, Theresa L. Windus, Patricia A. Thiel, James W. Evans Nov 2019

Sulfur Adsorption On Coinage Metal (100) Surfaces: Propensity For Metal-Sulfur Complex Formation Relative To (111) Surfaces, Da-Jiang Liu, Peter M. Spurgeon, Jiyoung Lee, Theresa L. Windus, Patricia A. Thiel, James W. Evans

Chemistry Publications

Experimental data from low-temperature Scanning Tunneling Microscopy (LTSTM) studies on coinage metal surfaces with very low coverages of S is providing new insights into metal-S interactions. A previous LTSTM study for Cu(100), and a new analysis reported here for Ag(100), both indicate no metal-sulfur complex formation, but an Au4S5 complex was observed previously on Au(100). In marked contrast, various complexes have been proposed and/or observed on Ag(111) and Cu(111), but not on Au(111). Also, exposure to trace amounts of S appears to enhance mass transport far more dramatically on (111) than on (100 ...


Diffraction Paradox: An Unusually Broad Diffraction Background Marks High Quality Graphene, Shen Chen, Michael Horn-Von Hoegen, Patricia A. Thiel, Michael C. Tringides Oct 2019

Diffraction Paradox: An Unusually Broad Diffraction Background Marks High Quality Graphene, Shen Chen, Michael Horn-Von Hoegen, Patricia A. Thiel, Michael C. Tringides

Chemistry Publications

The realization of the unusual properties of two-dimensional (2D) materials requires the formation of large domains of single-layer thickness, extending over the mesoscale. It is found that the formation of uniform graphene on SiC, contrary to textbook diffraction, is signaled by a strong bell-shaped component (BSC) around the (00) and G(10) spots (but not around the substrate spots). The BCS is also seen on graphene grown on metals, because a single uniform graphene layer can be also grown with large lateral size. It is only seen by electron diffraction but not with x-ray or He scattering. Although the origin ...


Characteristics Of Sulfur Atoms Adsorbed On Ag(100), Ag(110), And Ag(111) As Probed With Scanning Tunneling Microscopy: Experiment And Theory, Peter M. Spurgeon, Da-Jiang Liu, Holly Walen, Junepyo Oh, Hyun Jin Yang, Yousoo Kim, Patricia A. Thiel May 2019

Characteristics Of Sulfur Atoms Adsorbed On Ag(100), Ag(110), And Ag(111) As Probed With Scanning Tunneling Microscopy: Experiment And Theory, Peter M. Spurgeon, Da-Jiang Liu, Holly Walen, Junepyo Oh, Hyun Jin Yang, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

In this paper, we report that S atoms on Ag(100) and Ag(110) exhibit a distinctive range of appearances in scanning tunneling microscopy (STM) images, depending on the sample bias voltage, VS. Progressing from negative to positive VS, the atomic shape can be described as a round protrusion surrounded by a dark halo (sombrero) in which the central protrusion shrinks, leaving only a round depression. This progression resembles that reported previously for S atoms on Cu(100). We test whether DFT can reproduce these shapes and the transition between them, using a modified version of the Lang–Tersoff–Hamann ...


Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel Mar 2019

Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable ...


Kinetics, Energetics, And Size Dependence Of The Transformation From Pt To Ordered Ptsn Intermetallic Nanoparticles, Minda Chen, Yong Han, Tian Wei Goh, Rong Sun, Raghu V. Maligal‐Ganesh, Yuchen Pei, Chia‐ Kuang Tsung, James W. Evans, Wenyu Huang Jan 2019

Kinetics, Energetics, And Size Dependence Of The Transformation From Pt To Ordered Ptsn Intermetallic Nanoparticles, Minda Chen, Yong Han, Tian Wei Goh, Rong Sun, Raghu V. Maligal‐Ganesh, Yuchen Pei, Chia‐ Kuang Tsung, James W. Evans, Wenyu Huang

Chemistry Publications

The outstanding catalytic activity and chemical selectivity of intermetallic compounds make them excellent candidates for heterogeneous catalysis. However, the kinetics of their formation at the nanoscale is poorly understood or characterized, and precise control of their size, shape as well as composition during synthesis remains challenging. Here, using well-defined Pt nanoparticles (5 nm and 14 nm) encapsulated in mesoporous silica, we study the transformation kinetics from monometallic Pt to intermetallic PtSn at different temperatures by a series of time-evolution X-ray diffraction studies. Observations indicate an initial transformation stage mediated by Pt surface-controlled intermixing kinetics, followed by a second stage with ...


Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-Tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel Jan 2019

Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-Tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

Shapes of functional metallic nanocrystals, typically synthesized either free in solution or supported on surfaces, are key for controlling properties. Here, we consider a novel new class of metallic nanocrystals, copper islands embedded near the surface of graphite, which can be considered a model system for metals embedded beneath surfaces of layered materials, or beneath supported membranes. We develop a continuum elasticity (CE) model for the equilibrium shape of these islands, and compare its predictions with experimental data. The CE model incorporates appropriate surface energy, adhesion energies, and strain energy. The agreement between the CE model and the data is ...


Reverse-Engineering Of Graphene On Metal Surfaces: A Case Study Of Embedded Ruthenium, Ann Lii-Rosales, Yong Han, Ka Man Yu, Dapeng Jing, Nathaniel Anderson, David Vaknin, Michael C. Tringides, James W. Evans, Michael S. Altman, Patricia A. Thiel Oct 2018

Reverse-Engineering Of Graphene On Metal Surfaces: A Case Study Of Embedded Ruthenium, Ann Lii-Rosales, Yong Han, Ka Man Yu, Dapeng Jing, Nathaniel Anderson, David Vaknin, Michael C. Tringides, James W. Evans, Michael S. Altman, Patricia A. Thiel

Chemistry Publications

Using scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy, we show that Ru forms metallic nanoislands on graphite, covered by a graphene monolayer. These islands are air-stable, contain 2–4 layers of Ru, and have diameters on the order of 10 nm. To produce these nanoislands two conditions must be met during synthesis. The graphite surface must be ion-bombarded, and subsequently held at an elevated temperature (1000–1180 K) during Ru deposition. A coincidence lattice forms between the graphene overlayer and the Ru island top. Its characteristics—coincidence lattice constant, corrugation amplitude, and variation of carbon lattice appearance ...


Spatial–Temporal Spectroscopy Characterizations And Electronic Structure Of Methylammonium Perovskites, Zhaoyu Liu, K. C. Bhamu, Liang Luo, Satvik Shah, Joong-Mok Park, Di Cheng, Men Long, Rana Biswas, F. Fungara, Ruth Shinar, Joseph Shinar, Javier Vela, Jigang Wang Jul 2018

Spatial–Temporal Spectroscopy Characterizations And Electronic Structure Of Methylammonium Perovskites, Zhaoyu Liu, K. C. Bhamu, Liang Luo, Satvik Shah, Joong-Mok Park, Di Cheng, Men Long, Rana Biswas, F. Fungara, Ruth Shinar, Joseph Shinar, Javier Vela, Jigang Wang

Chemistry Publications

Using time-resolved laser-scanning confocal microscopy and ultrafast optical pump/THz probe spectroscopy, we measure photoluminescence and THz-conductivity in perovskite micro-crystals and films. Photoluminescence quenching and lifetime variations occur from local heterogeneity. Ultrafast THz-spectra measure sharp quantum transitions from excitonic Rydberg states, providing weakly bound excitons with a binding energy of ~13.5 meV at low temperatures. Ab-initio electronic structure calculations give a direct band gap of 1.64 eV, a dielectric constant ~18, heavy electrons, and light holes, resulting in weakly bound excitons, consistent with the binding energies from experiment. The complementary spectroscopy and simulations reveal fundamental insights into perovskite ...


Theoretical Prediction Of Crystallization Kinetics Of A Supercooled Lennard-Jones Fluid, K. G. S. H. Gunawardana, Xueyu Song May 2018

Theoretical Prediction Of Crystallization Kinetics Of A Supercooled Lennard-Jones Fluid, K. G. S. H. Gunawardana, Xueyu Song

Chemistry Publications

The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory ...


Defect-Mediated, Thermally-Activated Encapsulation Of Metals At The Surface Of Graphite, Yinghui Zhou, Ann Lii-Rosales, Minsung Kim, Mark Wallingford, Dapeng Jing, Michael C. Tringides, Cai-Zhuang Wang, Patricia A. Thiel Feb 2018

Defect-Mediated, Thermally-Activated Encapsulation Of Metals At The Surface Of Graphite, Yinghui Zhou, Ann Lii-Rosales, Minsung Kim, Mark Wallingford, Dapeng Jing, Michael C. Tringides, Cai-Zhuang Wang, Patricia A. Thiel

Chemistry Publications

We show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metals (Ru and Cu ...


Polar Intermetallics Pr5co2ge3 And Pr7co2ge4 With Planar Hydrocarbon‐Like Metal Clusters, Qisheng Lin, Kaiser Aguirre, Scott M. Saunders, Timothy A. Hackett, Yong Liu, Valentin Taufour, Durga Paudyal, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller Aug 2017

Polar Intermetallics Pr5co2ge3 And Pr7co2ge4 With Planar Hydrocarbon‐Like Metal Clusters, Qisheng Lin, Kaiser Aguirre, Scott M. Saunders, Timothy A. Hackett, Yong Liu, Valentin Taufour, Durga Paudyal, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller

Chemistry Publications

Planar hydrocarbon‐like metal clusters may foster new insights linking organic molecules with conjugated π–π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr5Co2Ge3 and Pr7Co2Ge4, both of which feature such planar metal clusters, namely, ethylene‐like [Co2Ge4] clusters plus the concatenated forms and polyacene‐like [Co2Ge2]n ribbons in Pr5Co2Ge3, and 1,2,4,5‐tetramethylbenzene‐like [Co4Ge6] cluster in Pr7Co2Ge4. Just as in the related planar organic structures, these metal–metalloid species are dominated by covalent bonding interactions. Both ...


Crystal Structure, Homogeneity Range And Electronic Structure Of Rhombohedral Γ-Mn5al8, Srinivasa Thimmaiah, Zachary Tener, Tej N. Lamichhane, Paul C. Canfield, Gordon J. Miller Jul 2017

Crystal Structure, Homogeneity Range And Electronic Structure Of Rhombohedral Γ-Mn5al8, Srinivasa Thimmaiah, Zachary Tener, Tej N. Lamichhane, Paul C. Canfield, Gordon J. Miller

Chemistry Publications

The γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn5–x Al8+x were grown using Sn-flux at 650 °C. The crystal structure, atomic coordinates and site occupancy parameters of γ-Mn5−x Al8+x phases were refined from single crystal X-ray data. The γ-Mn5-x Al8+x phase adopts the rhombohedral Cr5Al8-type structure rather than a cubic γ-brass structure. The refined compositions from two crystals extracted ...


A Molecular Debye-Hückel Theory And Its Applications To Electrolyte Solutions: The Size Asymmetric Case, Tiejen Xiao, Xueyu Song Mar 2017

A Molecular Debye-Hückel Theory And Its Applications To Electrolyte Solutions: The Size Asymmetric Case, Tiejen Xiao, Xueyu Song

Chemistry Publications

A molecular Debye-Hückel theory for electrolyte solutions with size asymmetry is developed, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. As the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types of charge sources, namely, a bare solute charge and a charge distribution due to size asymmetry. These two kinds of charge sources are screened by the solvent differently, our theory presents a method to calculate the mean electric potential as well ...


Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary Jan 2017

Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary

Chemistry Publications

To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions—horizontal (H), tilted (T), and vertical (V)—relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment ...


What Is The Best Method To Fit Time-Resolved Data? A Comparison Of The Residual Minimization And The Maximum Likelihood Techniques As Applied To Experimental Time-Correlated, Single-Photon Counting Data, Kalyan Santra, Jinchun Zhan, Xueyu Song, Emily A. Smith, Namrata Vaswani, Jacob W. Petrich Feb 2016

What Is The Best Method To Fit Time-Resolved Data? A Comparison Of The Residual Minimization And The Maximum Likelihood Techniques As Applied To Experimental Time-Correlated, Single-Photon Counting Data, Kalyan Santra, Jinchun Zhan, Xueyu Song, Emily A. Smith, Namrata Vaswani, Jacob W. Petrich

Chemistry Publications

The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited-state decay function. This need has stimulated a further investigation into the relative merits of two fitting techniques commonly referred to as “residual minimization” (RM) and “maximum likelihood” (ML). Fluorescence decays of the well-characterized standard, rose bengal in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which the total number of “photon ...


The Transition From The Open Minimum To The Ring Minimum On The Ground State And On The Lowest Excited State Of Like Symmetry In Ozone: A Configuration Interaction Study, Theresa Lynn Windus, Daniel Theis, Joseph Ivanic, Klaus Ruedenberg Jan 2016

The Transition From The Open Minimum To The Ring Minimum On The Ground State And On The Lowest Excited State Of Like Symmetry In Ozone: A Configuration Interaction Study, Theresa Lynn Windus, Daniel Theis, Joseph Ivanic, Klaus Ruedenberg

Chemistry Publications

The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1 ...


Superconducting Properties Of Rh 9 In 4 S 4 Single Crystals, Udhara S. Kaluarachchi, Qisheng Lin, Weiwei Xie, Valentin Taufour, S. L. Bud’Ko, Gordon J. Miller, Paul C. Canfield Jan 2016

Superconducting Properties Of Rh 9 In 4 S 4 Single Crystals, Udhara S. Kaluarachchi, Qisheng Lin, Weiwei Xie, Valentin Taufour, S. L. Bud’Ko, Gordon J. Miller, Paul C. Canfield

Chemistry Publications

The synthesis and crystallographic, thermodynamic, and transport properties of single crystalline Rh9In4S4 were studied. The resistivity, magnetization, and specific heat measurements all clearly indicate bulk superconductivity with a critical temperature, Tc∼2.25 K. The Sommerfeld coefficient γ and the Debye temperature (ΘD) were found to be 34 mJ mol−1 K−2 and 217 K, respectively. The observed specific heat jump, ΔC/γTc=1.66, is larger than the expected BCS weak coupling value of 1.43. Ginzburg-Landau (GL) ratio of the low-temperature GL-penetration depth, λGL≈5750 Å, to the GL-coherence length, ξGL≈94 Å, is large: κ ∼60 ...


Oxygen Trapped By Rare Earth Tetrahedral Clusters In Nd4feos6: Crystal Structure, Electronic Structure, And Magnetic Properties, Qisheng Lin, Valentin Taufour, Yuemei Zhang, Max Wood, Thomas Drtina, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller Sep 2015

Oxygen Trapped By Rare Earth Tetrahedral Clusters In Nd4feos6: Crystal Structure, Electronic Structure, And Magnetic Properties, Qisheng Lin, Valentin Taufour, Yuemei Zhang, Max Wood, Thomas Drtina, Sergey L. Bud’Ko, Paul C. Canfield, Gordon J. Miller

Chemistry Publications

Single crystals of Nd4FeOS6 were grown from an Fe–S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å3, Z=2), featuring parallel chains of face-sharing [FeS6×1/2]4− trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6and the related La3CuSiS7− and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low ...


Preface: Special Topic On Supramolecular Self-Assembly At Surfaces, Ludwig Bartels, Karl-Heinz Ernst, Hong-Jun Gao, Patricia A. Thiel Jan 2015

Preface: Special Topic On Supramolecular Self-Assembly At Surfaces, Ludwig Bartels, Karl-Heinz Ernst, Hong-Jun Gao, Patricia A. Thiel

Chemistry Publications

Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.


Cu2s3 Complex On Cu(111) As A Candidate For Mass Transport Enhancement, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Christine M. Aikens, Yousoo Kim, Patricia A. Thiel Jan 2015

Cu2s3 Complex On Cu(111) As A Candidate For Mass Transport Enhancement, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Christine M. Aikens, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

Sulfur-metal complexes, containing only a few atoms, can open new, highly efficient pathways for transport of metal atoms on surfaces. For example, they can accelerate changes in the shape and size of morphological features, such as two-dimensional nanoclusters, over time. In this study we perform STM under conditions that are designed to specifically isolate such complexes. We find a new, unexpected S-Cu complex on the Cu(111) surface, which we identify as Cu2S3. We propose that Cu2S3 enhances mass transport in this system, which contradicts a previous proposal based on Cu3S3 ...


Self-Organization Of S Adatoms On Au(111): √3r30° Rows At Low Coverage, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Yousoo Kim, Patricia A. Thiel Jan 2015

Self-Organization Of S Adatoms On Au(111): √3r30° Rows At Low Coverage, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30◦ from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √ 3 times the surface lattice constant, a. Monte Carlo simulations are performed on ...


Reconstruction Of Steps On The Cu(111) Surface Induced By Sulfur, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Yousoo Kim, Patricia A. Thiel Jan 2015

Reconstruction Of Steps On The Cu(111) Surface Induced By Sulfur, Holly L. Walen, Da-Jiang Liu, Junepyo Oh, Hyunseob Lim, James W. Evans, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

Arich menagerie of structures is identified at 5Kfollowing adsorption of lowcoverages (≤0.05 monolayers) of S on Cu(111) at room temperature. This paper emphasizes the reconstructions at the steps. The A-type close-packed step has 1 row of S atoms along its lower edge, where S atoms occupy alternating pseudo-fourfold-hollow (p4fh) sites. Additionally, there are 2 rows of S atoms of equal density on the upper edge, bridging a row of extra Cu atoms, together creating an extended chain. The B-type close-packed step exhibits an even more complex reconstruction, in which triangle-shaped groups of Cu atoms shift out of their ...


Nonclassical “Explosive” Nucleation In Pb/Si(111) At Low Temperatures, Matthew T. Hershberger, Myron Hupalo, Patricia A. Thiel, Cai-Zhuang Wang, Kai-Ming Ho, Michael C. Tringides Dec 2014

Nonclassical “Explosive” Nucleation In Pb/Si(111) At Low Temperatures, Matthew T. Hershberger, Myron Hupalo, Patricia A. Thiel, Cai-Zhuang Wang, Kai-Ming Ho, Michael C. Tringides

Chemistry Publications

Classically, the onset of nucleation is defined in terms of a critical cluster of the condensed phase, which forms from the gradual aggregation of randomly diffusing adatoms. Experiments in Pb/Si(111) at low temperature have discovered a dramatically different type of nucleation, with perfect crystalline islands emerging “explosively” out of the compressed wetting layer after a critical coverage Θc ¼ 1.22 ML is reached. The unexpectedly high island growth rates, the directional correlations in the growth of neighboring islands and the persistence in time of where mass is added in individual islands, suggest that nucleation is a result ...


Determining Whether Metals Nucleate Homogeneously On Graphite: A Case Study With Copper, David Victor Appy, Huaping Lei, Yong Han, Cai-Zhuang Wang, Michael C. Tringides, Dahai Shao, Emma Jane Kwolek, James W. Evans, Patricia A. Thiel Nov 2014

Determining Whether Metals Nucleate Homogeneously On Graphite: A Case Study With Copper, David Victor Appy, Huaping Lei, Yong Han, Cai-Zhuang Wang, Michael C. Tringides, Dahai Shao, Emma Jane Kwolek, James W. Evans, Patricia A. Thiel

Chemistry Publications

We observe that Cu clusters grow on surface terraces of graphite as a result of physical vapor deposition in ultrahigh vacuum. We show that the observation is incompatible with a variety of models incorporating homogeneous nucleation and calculations of atomic-scale energetics. An alternative explanation, ion-mediated heterogeneous nucleation, is proposed and validated, both with theory and experiment. This serves as a case study in identifying when and whether the simple, common observation of metal clusters on carbon-rich surfaces can be interpreted in terms of homogeneous nucleation. We describe a general approach for making system-specific and laboratory-specific predictions.


Transition Metals On The (0001) Surface Of Graphite: Fundamental Aspects Of Adsorption, Diffusion, And Morphology, David Victor Appy, Huaping Lei, Cai-Zhuang Wang, Michael C. Tringides, Da-Jiang Liu, James W. Evans, Patricia A. Thiel Jan 2014

Transition Metals On The (0001) Surface Of Graphite: Fundamental Aspects Of Adsorption, Diffusion, And Morphology, David Victor Appy, Huaping Lei, Cai-Zhuang Wang, Michael C. Tringides, Da-Jiang Liu, James W. Evans, Patricia A. Thiel

Chemistry Publications

In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out.


Taking Advantage Of Gold’S Electronegativity In R4mn3–Xau10+X (R = Gd Or Y; 0.2 ≤ X ≤ 1), Saroj L. Samal, Abhishek Pandey, D. C. Johnston, John D. Corbett, Gordon J. Miller Jan 2014

Taking Advantage Of Gold’S Electronegativity In R4mn3–Xau10+X (R = Gd Or Y; 0.2 ≤ X ≤ 1), Saroj L. Samal, Abhishek Pandey, D. C. Johnston, John D. Corbett, Gordon J. Miller

Chemistry Publications

Ternary R4Mn3–xAu10+x (R = Gd or Y; 0.2 ≤ x ≤ 1) compounds have been synthesized and characterized using single-crystal X-ray diffraction. The structure is a ternary variant of orthorhombic Zr7Ni10 (oC68, space group Cmca) and is isostructural with Ca4In3Au10. The structure contains layers of Mn-centered rectangular prisms of gold (Mn@Au8), interbonded via Au atoms in the b-c plane, and stacked in a hexagonal close packed arrangement along the a direction. These layers are bonded via additional Mn atoms along the a direction. The ...


Search For The Structure Of A Sulfur-Induced Reconstruction On Cu(111), Da-Jiang Liu, Holly L. Walen, Junepyo Oh, James W. Evans, Yousoo Kim, Patricia A. Thiel Jan 2014

Search For The Structure Of A Sulfur-Induced Reconstruction On Cu(111), Da-Jiang Liu, Holly L. Walen, Junepyo Oh, James W. Evans, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

We have carried out an extensive DFT-based search for the structure of the (√43 × √43)R ± 7.5° reconstruction of S on Cu(111), which exhibits a honeycombtype structure in scanning tunneling microscopy (STM). We apply two criteria in this search: The structure must have a reasonably low chemical potential, and it must provide a good match with STM data, both our own and the data published by Wahlström et al. Phys. Rev. B 1999, 60, 10699. The best model has 12 S adatoms and 9 Cu adatoms per unit cell. Local defects within the Cu9S12 framework, consisting of ...


Β-Mn-Type Co8+Xzn12–X As A Defect Cubic Laves Phase: Site Preferences, Magnetism, And Electronic Structure, Weiwei Xie, Srinvasa Timmaiah, Jagat Lamal, Jing Liu, Thomas W. Heitmann, Dante Quirinale, A. I. Goldman, Vitalij K. Pecharsky, Gordon J. Miller Jan 2013

Β-Mn-Type Co8+Xzn12–X As A Defect Cubic Laves Phase: Site Preferences, Magnetism, And Electronic Structure, Weiwei Xie, Srinvasa Timmaiah, Jagat Lamal, Jing Liu, Thomas W. Heitmann, Dante Quirinale, A. I. Goldman, Vitalij K. Pecharsky, Gordon J. Miller

Chemistry Publications

The results of crystallographic analysis, magnetic characterization, and theoretical assessment of β-Mn-type Co–Zn intermetallics prepared using high-temperature methods are presented. These β-Mn Co–Zn phases crystallize in the space group P4132 [Pearson symbol cP20; a = 6.3555(7)–6.3220(7)], and their stoichiometry may be expressed as Co8+xZn12–x [1.7(2) < x < 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co8+xZn12–x reveals that the β-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting ...


Analytic Formulations For One-Dimensional Decay Of Rectangular Homoepitaxial Islands During Coarsening On Anisotropic Fcc (110) Surfaces, Chi-Jen Wang, Yong Han, Holly L. Walen, Selena M. Russell, Patricia A. Thiel, James W. Evans Jan 2013

Analytic Formulations For One-Dimensional Decay Of Rectangular Homoepitaxial Islands During Coarsening On Anisotropic Fcc (110) Surfaces, Chi-Jen Wang, Yong Han, Holly L. Walen, Selena M. Russell, Patricia A. Thiel, James W. Evans

Chemistry Publications

Submonolayer homoepitaxial fcc (110) systems display behavior reflecting strong anisotropy at lower temperatures, including one-dimensional decay during Ostwald ripening of rectangular islands maintaining constant width in the 〈001〉 direction. To appropriately describe this behavior, we first develop a refined continuum Burton-Cabrera-Frank formalism, which accounts for a lack of equilibration of island shape and importantly also for inhibited incorporation of adatoms at almost-faceted 〈1̄10〉 island edges through effective kinetic coefficients. This formalism is shown to describe accurately the adatom diffusion fluxes between islands and thus island evolution for a complex experimental island configuration, as confirmed by matching results ...


Communication: Structure, Formation, And Equilibration Of Ensembles Of Ag-S Complexes On An Ag Surface, Selena M. Russell, Yousoo Kim, Da-Jiang Liu, James W. Evans, Patricia A. Thiel Jan 2013

Communication: Structure, Formation, And Equilibration Of Ensembles Of Ag-S Complexes On An Ag Surface, Selena M. Russell, Yousoo Kim, Da-Jiang Liu, James W. Evans, Patricia A. Thiel

Chemistry Publications

We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.