Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Series

Mechanical Engineering

Fluidized bed

Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Physics

Acoustic Field Effects On Minimum Fluidization Velocity In A 3d Fluidized Bed, David R. Escudero, Theodore J. Heindel Jul 2012

Acoustic Field Effects On Minimum Fluidization Velocity In A 3d Fluidized Bed, David R. Escudero, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized beds are used in a variety of process industries because they provide uniform temperature distributions, low pressure drops, and high heat/mass rates. Minimum fluidization velocity is an important factor in understanding the hydrodynamic behavior of fluidized beds, and this characteristic may be modified through high frequency (sound) vibrations. The effects caused by sound wave frequency on the minimum fluidization velocity in a 3D fluidized bed are investigated in this study. Experiments are carried out in a 10.2 cm ID cold flow fluidized bed filled with glass beads with material density of 2600 kg/m3, and particles ...


A Method To Quantify Mixing In A Two Component Fluidized Bed, Norman K. Keller, Theodore J. Heindel Aug 2010

A Method To Quantify Mixing In A Two Component Fluidized Bed, Norman K. Keller, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized bed technology can be used for pyrolysis and gasification of solid fuel particles such as biomass, which is important to industry because of its potential as an alternative for petroleum-based fuels. To efficiently utilize a fluidized bed reactor it is necessary, among other factors, to investigate the mixing and segregation behavior of the fuel particles with the bed material. In order to characterize the material distribution, a technique to visualize the biomass inside a fluidized bed reactor has been developed using X-ray computed tomography (CT) scans. This paper presents an image analysis procedure that can be used to quantify ...


X-Ray Particle Tracking Velocimetry In Fluidized Beds, Joshua B. Drake, Lie Tang, Theodore J. Heindel Aug 2009

X-Ray Particle Tracking Velocimetry In Fluidized Beds, Joshua B. Drake, Lie Tang, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized beds are commonly found in the chemical and energy processing industries because of their low pressure drop, uniform temperature distribution, and high heat transfer rates. For example, in biomass gasification, biomass particles are injected into a heated bubbling bed of inert material (typically refractory sand) that volatilizes to form a flammable gas. However, the movement of the biomass particle through the bubbling bed is difficult to quantify because the systems are opaque. This paper describes X-ray particle tracking velocimetry (XPTV) applied to fluidized beds, where X-ray flow visualization is used to track the location of a single fabricated tracer ...


Repeatability Of Gas Holdup In A Fluidized Bed Using X-Ray Computed Tomography, Joshua B. Drake, Theodore J. Heindel Aug 2009

Repeatability Of Gas Holdup In A Fluidized Bed Using X-Ray Computed Tomography, Joshua B. Drake, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Characterizing the hydrodynamics in fluidized beds is important to many processes from producing biofuels to coating pharmaceuticals. X-ray computed tomography (CT) can quantify local time-averaged phase fractions in multiphase systems that are highly dynamic, like fluidized beds. This paper describes the calibration methods used to produced CT images of a 15.24 cm diameter fluidized bed, how in-house software used these CTs to calculate gas holdup, and how well multiple CTs of a dynamic fluidized bed produced repeatable results while varying bed material and superficial gas velocities. It was concluded there is a very high degree of repeatability using the ...


Modeling A Biomass Fluidizing Bed With Side Port Air Injection, Mirka Deza, Francine Battaglia, Theodore J. Heindel Aug 2009

Modeling A Biomass Fluidizing Bed With Side Port Air Injection, Mirka Deza, Francine Battaglia, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized beds are used to gasify materials such as coal or biomass in the production of producer gas. Modeling these reactors using computational fluid dynamics is advantageous when performing parametric studies for design and scale-up. While two-dimensional simulations are easier to perform than three-dimensional simulations, they may not capture the proper physics. This paper compares two- and three-dimensional simulations with experiments for a reactor geometry with side port air injection. The side port is located within the bed region so that the injected air can help promote mixing. Of interest in this study is validating the hydrodynamics of fluidizing biomass ...


A Validation Study For The Hydrodynamics Of Biomass In A Fluidized Bed, Mirka Deza, Francine Battaglia, Theodore J. Heindel Aug 2008

A Validation Study For The Hydrodynamics Of Biomass In A Fluidized Bed, Mirka Deza, Francine Battaglia, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Computational modeling of fluidized beds can be used to predict operation of biomass gasifiers after extensive validation with experimental data. The present work focused on computational simulations of a fluidized bed using a multifluid Eulerian-Eulerian model to represent the gas and solid phases as interpenetrating continua. Hydrodynamic results from the simulations were quantitatively compared with X-ray flow visualization studies of a similar bed. It was found that the Gidaspow model can accurately predict the hydrodynamics of the biomass in a fluidized bed. The coefficient of restitution of biomass was fairly high and did not affect the hydrodynamics of the bed ...


Minimum Fluidization Velocity And Gas Holdup In Fluidized Beds With Side Port Air Injection, Nathan P. Franka, Joshua B. Drake, Theodore J. Heindel Aug 2008

Minimum Fluidization Velocity And Gas Holdup In Fluidized Beds With Side Port Air Injection, Nathan P. Franka, Joshua B. Drake, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Fluidized beds can be used to gasify biomass in the production of producer gas, a flammable gas that can replace natural gas in process heating. Knowing how the fluidized bed hydrodynamics vary as reactor dimensions are scaled up is vital for improving reactor efficiency. This study utilizes 10.2 cm and 15.2 cm diameter fluidized beds with added side port air injection to investigate column diameter effects on fluidized bed hydrodynamics. Both inert (glass beads) and biomass (ground walnut shell and ground corncob) bed materials are used and the hydrodynamic differences with side port air injection are recorded. Minimum ...