Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

High Throughput, Automated Prediction Of Focusing Patterns For Inertial Microfluidics, Aditya Kommajosula, Jeong-Ah Kim, Wonhee Lee, Baskar Ganapathysubramanian Jan 2019

High Throughput, Automated Prediction Of Focusing Patterns For Inertial Microfluidics, Aditya Kommajosula, Jeong-Ah Kim, Wonhee Lee, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Visual inspections for identifying focusing points in inertial microfluidic flows are prone to misinterpreting stable locations and focusing shifts in the case of non-trivial focusing patterns. We develop and deploy an approach for automating the calculation of focusing patterns for a general channel geometry, and thereby reduce the dependence on empirical/visual procedures to confirm the presence of stable locations. We utilize concepts from interpolation theory (to represent continuous force-fields using discrete points), and stability theory to identify "basins of attraction" and quantitatively identify stable equilibrium points. Our computational experiments reveal that predicting equilibrium points accurately requires upto ×10-20 times ...


Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian Jan 2019

Shape-Design For Stabilizing Micro-Particles In Inertial Microfluidic Flows, Aditya Kommajosula, Daniel Stoecklein, Dino Di Carlo, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Design of microparticles which stabilize at the centerline of a channel flow when part of a dilute suspension is examined numerically for moderate Reynolds numbers (10≤Re≤80). Stability metrics for particles with arbitrary shapes are formulated based on linear-stability theory. Particle shape is parametrized by a compact, Non-Uniform Rational B-Spline (NURBS)-based representation. Shape-design is posed as an optimization problem and solved using adaptive Bayesian optimization. We focus on designing particles for maximal stability at the channel-centerline robust to perturbations. Our results indicate that centerline-focusing particles are families of characteristic "fish"/"bottle"/"dumbbell"-like shapes, exhibiting fore-aft asymmetry. A ...


Theoretical And Experimental Investigation Of Forward Spatter Of Blood From A Gunshot, P. M. Comiskey, A. L. Yarin, Daniel Attinger Jun 2018

Theoretical And Experimental Investigation Of Forward Spatter Of Blood From A Gunshot, P. M. Comiskey, A. L. Yarin, Daniel Attinger

Mechanical Engineering Publications

A theoretical model predicting forward blood spatter patterns resulting from a round nose bullet gunshot wound is proposed. The chaotic disintegration of a blood layer located ahead and aside of the bullet is considered in the framework of percolation theory. The size distribution of blood drops is determined, which allows for the prediction of a blood spatter cloud being ejected from the rear side of the target where the bullet exits. Then, droplet trajectories are numerically predicted accounting for gravity and air drag, which is affected by the collective aerodynamic interaction of drops through air. The model predicts the number ...


Tip-Enhanced Raman Scattering Of Dna Aptamers For Listeria Monocytogenes, Siyu He, Hongyuan Li, Carmen L. Gomes, Dmitri V. Voronine May 2018

Tip-Enhanced Raman Scattering Of Dna Aptamers For Listeria Monocytogenes, Siyu He, Hongyuan Li, Carmen L. Gomes, Dmitri V. Voronine

Mechanical Engineering Publications

Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition ...


Hydrodynamics Of Back Spatter By Blunt Bullet Gunshot With A Link To Bloodstain Pattern Analysis, P. M. Comiskey, A. L. Yarin, Daniel Attinger Jul 2017

Hydrodynamics Of Back Spatter By Blunt Bullet Gunshot With A Link To Bloodstain Pattern Analysis, P. M. Comiskey, A. L. Yarin, Daniel Attinger

Mechanical Engineering Publications

A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood ...


Characterization Of Chlorella Vulgaris And Chlorella Protothecoides Using Multi-Pixel Photon Counters In A 3d Focusing Optofluidic System, Jonathan B. Vander Wiel, Jonathan D. Mikulicz, Michael R. Boysen, Niloofer Hashemi, Patrick Kalgren, Levi M. Nauman, Seth J. Baetzold, Gabrielle G. Powell, Qing He, Nicole Nastaran Hashemi Jan 2017

Characterization Of Chlorella Vulgaris And Chlorella Protothecoides Using Multi-Pixel Photon Counters In A 3d Focusing Optofluidic System, Jonathan B. Vander Wiel, Jonathan D. Mikulicz, Michael R. Boysen, Niloofer Hashemi, Patrick Kalgren, Levi M. Nauman, Seth J. Baetzold, Gabrielle G. Powell, Qing He, Nicole Nastaran Hashemi

Mechanical Engineering Publications

Analysis of microparticle size and fluorescence intensity can be used to classify microparticles. We designed and fabricated an optofluidic system that characterizes microparticles, including fluorescent microparticles and microalgae. A new type of multi-pixel photon counter (MPPC) was employed to miniaturize the device, lower its power consumption, and make it insensitive to magnetic fields. The system uses a 635 nm laser for excitation of the microparticles' fluorescence. The scattered light from the fluorescent microparticles, as well as Chlorella vulgaris and Chlorella protothecoides, were measured. Additionally, we analyzed the width and height of the measured signals generated as a result of microparticles ...


Prediction Of Blood Back Spatter From A Gunshot In Bloodstain Pattern Analysis, P. M. Comiskey, A. L. Yarin, S. Kim, Daniel Attinger Aug 2016

Prediction Of Blood Back Spatter From A Gunshot In Bloodstain Pattern Analysis, P. M. Comiskey, A. L. Yarin, S. Kim, Daniel Attinger

Mechanical Engineering Publications

A theoretical model for predicting and interpreting blood-spatter patterns resulting from a gunshot wound is proposed. The physical process generating a backward spatter of blood is linked to the Rayleigh-Taylor instability of blood accelerated toward the surrounding air, allowing the determination of the initial distribution of drop sizes and velocities. Then the motion of many drops in air is considered with governing equations accounting for gravity and air drag. Based on these equations, a numerical solution is obtained. It predicts the atomization process, the trajectories of the back-spatter drops of blood from the wound to the ground, the impact angle ...


Thermodynamics And Historical Relevance Of A Jetting Thermometer Made Of Chinese Zisha Ceramic, Vincent Lee, Daniel Attinger Jul 2016

Thermodynamics And Historical Relevance Of A Jetting Thermometer Made Of Chinese Zisha Ceramic, Vincent Lee, Daniel Attinger

Mechanical Engineering Publications

Following a recent trend of scientific studies on artwork, we study here the thermodynamics of a thermometer made of zisha ceramic, related to the Chinese tea culture. The thermometer represents a boy who “urinates” shortly after hot water is poured onto his head. Long jetting distance is said to indicate that the water temperature is hot enough to brew tea. Here, a thermodynamic model describes the jetting phenomenon of that pee-pee boy. The study demonstrates how thermal expansion of an interior air pocket causes jetting. A thermodynamic potential is shown to define maximum jetting velocity. Seven optimization criteria to maximize ...


Utilizing Wide Band Gap, High Dielectric Constant Nanoparticles As Additives In Organic Solar Cells, Ryan S. Gebhardt, Pengfei Du, Akshit Peer, Mitch Rock, Michael R. Kessler, Rana Biswas, Baskar Ganapathysubramanian, Sumit Chaudhary Jan 2015

Utilizing Wide Band Gap, High Dielectric Constant Nanoparticles As Additives In Organic Solar Cells, Ryan S. Gebhardt, Pengfei Du, Akshit Peer, Mitch Rock, Michael R. Kessler, Rana Biswas, Baskar Ganapathysubramanian, Sumit Chaudhary

Mechanical Engineering Publications

We experimentally and theoretically investigate the effects of utilizing BaTiO3 nanoparticles as additives in polythiophene/fullerene solar cells. BaTiO3 nanoparticles were chosen because of their multifaceted potential for increasing exciton dissociation (due to their high dielectric constant) and light scattering. To achieve stable suspensions for device fabrication, the nanoparticles were functionalized with organic ligands. Solar cells fabricated in air showed ∼40% enhancement in the photocurrent primarily due to string-like aggregates of functionalized BaTiO3 particles that increase light absorption without hindering charge collection. Solar cells fabricated in an inert atmosphere yielded overall more efficient devices, but the string-like aggregates were absent ...


High Aspect Ratio Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2o2 Decomposition, Kevin Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen Jan 2015

High Aspect Ratio Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2o2 Decomposition, Kevin Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen

Mechanical Engineering Publications

The utility of unmanned micro underwater vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. Herein we develop high-aspect ratio (150:1), multiwalled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 μm) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation ...


How Do Evaporating Thin Films Evolve? Unravelling Phase-Separation Mechanisms During Solvent-Based Fabrication Of Polymer Blends, Olga Wodo, Baskar Ganapathysubramanian Jan 2014

How Do Evaporating Thin Films Evolve? Unravelling Phase-Separation Mechanisms During Solvent-Based Fabrication Of Polymer Blends, Olga Wodo, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin ...


Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne Sep 2009

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne

Mechanical Engineering Publications

We describe further development of ballistic imaging adapted for the liquid core of an atomizing spray. To fully understand spray breakup dynamics, one must measure the velocity and acceleration vectors that describe the forces active in primary breakup. This information is inaccessible to most optical diagnostics, as the signal is occluded by strong scattering in the medium. Ballistic imaging mitigates this scattering noise, resolving clean shadowgram-type images of structures within the dense spray region. We demonstrate that velocity data can be extracted from ballistic images of a spray relevant to fuel-injection applications, by implementing a simple, targeted correlation method for ...