Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Platinum Nanoparticle During Electrochemical Hydrogen Evolution: Adsorbate Distribution, Active Reaction Species, And Size Effect, Teck L. Tan, Lin-Lin Wang, Jia Zhang, Duane D. Johnson, Kewu Bai Mar 2015

Platinum Nanoparticle During Electrochemical Hydrogen Evolution: Adsorbate Distribution, Active Reaction Species, And Size Effect, Teck L. Tan, Lin-Lin Wang, Jia Zhang, Duane D. Johnson, Kewu Bai

Ames Laboratory Publications

For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size ...


Morphological Transformations In The Magnetite Biomineralizing Protein Mms6 In Iron Solutions: A Small-Angle X‑Ray Scattering Study, Honghu Zhang, Xunpei Liu, Shuren Feng, Wenjie Wang, Klaus Schmidt-Rohr, Mufit Akinc, Marit Nilsen-Hamilton, David Vaknin, Surya K. Mallapragada Feb 2015

Morphological Transformations In The Magnetite Biomineralizing Protein Mms6 In Iron Solutions: A Small-Angle X‑Ray Scattering Study, Honghu Zhang, Xunpei Liu, Shuren Feng, Wenjie Wang, Klaus Schmidt-Rohr, Mufit Akinc, Marit Nilsen-Hamilton, David Vaknin, Surya K. Mallapragada

Chemical and Biological Engineering Publications

Magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular threedimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence of hydroxyl/carboxyl containing ...