Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Series

Chemical Engineering

Ames Laboratory Accepted Manuscripts

Articles 1 - 1 of 1

Full-Text Articles in Physics

Liquid-Like Thermal Conduction In Intercalated Layered Crystalline Solids, B. Li, H. Wang, Y. Kawakita, Q. Zhang, M. Feygenson, H. L. Yu, D. Wu, K. Ohara, T. Kikuchi, K. Shibata, T. Yamada, X. K. Ning, Y. Chen, J. Q. He, David Vaknin, R. Q. Wu, K. Nakajima, M. G. Kanatzidis Mar 2018

Liquid-Like Thermal Conduction In Intercalated Layered Crystalline Solids, B. Li, H. Wang, Y. Kawakita, Q. Zhang, M. Feygenson, H. L. Yu, D. Wu, K. Ohara, T. Kikuchi, K. Shibata, T. Yamada, X. K. Ning, Y. Chen, J. Q. He, David Vaknin, R. Q. Wu, K. Nakajima, M. G. Kanatzidis

Ames Laboratory Accepted Manuscripts

As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus ...