Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Theses/Dissertations

Aharonov-Bohm effect

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang Sep 2017

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang

Dissertations, Theses, and Capstone Projects

This dissertation is devoted to a study of detecting the Majorana fermion induced crossed Andreev reflection.

Majorana fermions are particles that constitute their own antiparticles. In condensed matter physics, Majorana fermions are zero energy modes that reside at edges or around vortices of topological superconductors. The special properties of Majorana fermions result in their potential to conduct topological quantum computation, which has been attracting a lot of current research. One of the most important issues in the field of the Majorana fermion physics now is to detect their existence in realistic systems. Among many classes of detecting methods, a transport …


Properties Of Type-Ii Znte/Znse Submonolayer Quantum Dots Studied Via Excitonic Aharonov-Bohm Effect And Polarized Optical Spectroscopy, Haojie Ji Feb 2016

Properties Of Type-Ii Znte/Znse Submonolayer Quantum Dots Studied Via Excitonic Aharonov-Bohm Effect And Polarized Optical Spectroscopy, Haojie Ji

Dissertations, Theses, and Capstone Projects

In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work.

I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3.

In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model …