Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Series

Discipline
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 294

Full-Text Articles in Physics

Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage Jan 2024

Physics 100 Level Laboratory Data Collection Tables, Kalani Hettiarachchilage

Open Educational Resources

The physics 100-level laboratory part demonstrates and applies the material learned from related classes. This document shows guidelines for collecting data and analyzing them by using Microsoft Excel. Laboratory components of PHY 114/ PHY 206/SLS 261 (Introduction to Physics and Nature of Physical Processes), PHY116/PHY 121 (Physics I and General Physics I), and PHY 156/PHY 161 (Physics II and General Physics II) at College of Staten Island are in-person mandatory sessions for students and it is required to pass to receive a passing grade for that class. This part is taught by different instructors. Although everyone is supposed to follow …


Physics Ii, Kalani Hettiarachchilage Dec 2023

Physics Ii, Kalani Hettiarachchilage

Open Educational Resources

Physics II, class code PHY 156 at College of Staten Island is the second part of two two-semester algebra-based introductory physics courses. This course overlaps of the following topics laws of electricity, magnetism, optics, and modern physics. The important laws of physics in these areas and problem-solving are emphasized. Problem solving is an integral part of the course, all contents are designed to think critically, analytically, and logically. Conceptual understanding is reinforced using interactive computer-based techniques, demonstrations, problem-solving strategies, and laboratory experiences. In this document, all the class materials including lectures, worksheets, homework, group work assignments, quizzes, and conceptual Slido …


Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage Dec 2023

Creative Physics Syllabus For Online Class, Kalani Hettiarachchilage

Open Educational Resources

Creative Physics syllabus for all information and guidelines will be a big help for students to know about the class structure, expectations, submission, personalized class materials, class ethics, and requirements in one place. This detailed syllabus will be a very effective way of expressing the information to the class. Creating a detailed syllabus and engaging activity of in the learning management system such as syllabus review activity will help students to navigate through important items on the syllabus.


Physics I, Kalani Hettiarachchilage Dec 2023

Physics I, Kalani Hettiarachchilage

Open Educational Resources

Physics I, class code PHY 116 at College of Staten Island is the first part of a two-semester algebra-based introductory physics course. This course overlaps many topics in the laws of classical mechanics, fluid dynamics, thermodynamics, wave motion, and sound. The important laws of physics in these areas and problem-solving are emphasized. Problem solving is an integral part of the course, all contents are designed to think critically, analytically, and logically. Conceptual understanding is reinforced using interactive computer-based techniques, demonstrations, problem-solving strategies, and laboratory experiences. In this document, all the class materials including lectures, worksheets, homework and group work assignments, …


Introduction To Physics, Kalani Hetti Dec 2023

Introduction To Physics, Kalani Hetti

Open Educational Resources

Introduction to physics, class code PHY 114 at college of Staten Island covers general physics concepts by using very simple algebraic calculations. Topics may include scientific measurements, significant figures, estimation, units, linear and rotational motion, vectors, forces, energy, momentum, collision, impulse, projectile motion, circular motion, thermodynamics, oscillating waves, electricity and magnetism, properties of lights, reflection, refraction, atomic nuclei, and radioactivity. This course is designed to teach general concepts and laws of physics to everyday life enforcing student’s critical thinking, logical patterns, organization, and everyday life applications. In this document, all the class materials including lectures, worksheets, homework assignments, quizzes, and …


Syllabus For Computational Physics (Phys 39907), Mark D. Shattuck Aug 2023

Syllabus For Computational Physics (Phys 39907), Mark D. Shattuck

Open Educational Resources

Syllabus for City College of New York Computational Physics course.


Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Phys 275: Intro To Scientific Computing, David Goldberg Jan 2023

Phys 275: Intro To Scientific Computing, David Goldberg

Open Educational Resources

No abstract provided.


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni Dec 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen–Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a “probability amplitude.” A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper, we present a new perspective on such determinism. The ideas are based on the equations of motion or “Quantal Newtonian” Laws obeyed by each electron. These Laws, derived from …


Classical Mechanics, Mark D. Shattuck Dec 2022

Classical Mechanics, Mark D. Shattuck

Open Educational Resources

Syllabus for Classical Mechanics


Coupled Spherical-Cavities, Stanislav Kreps, Vladimir Shuvayev, Mark Douvidzon, Baheej Bathish, Tom Lenkiewicz Abudi, Amirreza Ghaznavi, Jie Xu, Yang Lin, Lev Deych, Tal Carmon Dec 2022

Coupled Spherical-Cavities, Stanislav Kreps, Vladimir Shuvayev, Mark Douvidzon, Baheej Bathish, Tom Lenkiewicz Abudi, Amirreza Ghaznavi, Jie Xu, Yang Lin, Lev Deych, Tal Carmon

Publications and Research

In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 107. Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are …


Whispering Gallery Modes Of A Triatomic Photonic Molecule, Vladimir Shuvayev, Stanislav Kreps, Tal Carmon, Lev Deych Nov 2022

Whispering Gallery Modes Of A Triatomic Photonic Molecule, Vladimir Shuvayev, Stanislav Kreps, Tal Carmon, Lev Deych

Publications and Research

In this paper, we present the results of numerical simulations of the optical spectra of a three-sphere photonic molecule. The configuration of the system was continuously modified from linear to triangular, in-plane with the fundamental mode excited in one of the spheres and perpendicular to it. We found the relative insensitivity of the spectra to the in-plane deviation from the linear arrangement up to about 110°. For larger angles, the spectra show significant modification consisting of the major spectral peaks splitting and shifting. On the contrary, the spectra are quite sensitive to out-of-plane molecule deviation, even at small angles. Thus, …


Plasmon Damping Rates In Coulomb-Coupled 2d Layers In A Heterostructure, Dipendra Dahal, Godfrey Gumbs, Andrii Iurov, Chin-Sen Ting Nov 2022

Plasmon Damping Rates In Coulomb-Coupled 2d Layers In A Heterostructure, Dipendra Dahal, Godfrey Gumbs, Andrii Iurov, Chin-Sen Ting

Publications and Research

The Coulomb excitations of charge density oscillation are calculated for a double-layer heterostructure. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on a substrate. From the obtained surface response function, we calculated the plasmon dispersion relations, which demonstrate how the Coulomb interaction renormalizes the plasmon frequencies. Most importantly, we have conducted a thorough investigation of how the decay rates of the plasmons in these heterostructures are affected by the Coulomb coupling between different types of two- dimensional materials whose separations could be varied. A novel effect of nullification of the silicene band gap is noticed when graphene is …


Microstructural Origin Of The High-Energy Storage Performance In Epitaxial Lead-Free Ba(Zr 0.2 Ti 0.8 )O 3 Thick Films, Jun Ouyang, Xianke Wang, Changtao Shao, Hongbo Cheng, Hanfei Zhu, Yuhang Ren Sep 2022

Microstructural Origin Of The High-Energy Storage Performance In Epitaxial Lead-Free Ba(Zr 0.2 Ti 0.8 )O 3 Thick Films, Jun Ouyang, Xianke Wang, Changtao Shao, Hongbo Cheng, Hanfei Zhu, Yuhang Ren

Publications and Research

In our previous work, epitaxial Ba(Zr 0.2 Ti 0.8 )O 3 thick films (~1–2 μ m) showed an excellent energy storage performance with a large recyclable energy density (~58 J/cc) and a high energy efficiency (~92%), which was attributed to a nanoscale entangled heterophase polydomain structure. Here, we propose a detailed analysis of the structure–property relationship in these film materials, using an annealing process to illustrate the effect of nanodomain entanglement on the energy storage performance. It is revealed that an annealing-induced stress relaxation led to the segregation of the nanodomains (via detailed XRD analyses), and a degraded energy storage …


The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni Aug 2022

The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni

Publications and Research

A complementary perspective to the Göttingen-Copenhagen interpretation of stationary-state quantum theory of electrons in an electromagnetic field is described. The perspective, derived from Schrödinger-Pauli theory, is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ First Law. The Law is in terms of ‘classical’ fields experienced by each electron: the sum of the external and internal fields vanishes. The external field is a sum of the electrostatic and Lorentz fields. The internal field is a sum of fields’ representative of Pauli and Coulomb correlations; kinetic effects; electron density; and internal magnetic component. The energy is obtained …


Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri Aug 2022

Arrayed Waveguide Lens For Beam Steering, Mostafa Honari-Latifpour, Ali Binaie, Mohammad Amin Eftekhar, Nicholas Madamopoulos, Mohammad-Ali Miri

Publications and Research

Integrated planar lenses are critical components for analog optical information processing that enable a wide range of applications including beam steering. Conventional planar lenses require gradient index control which makes their on-chip realization challenging. Here, we introduce a new approach for beam steering by designing an array of coupled waveguides with segmented tails that allow for simultaneously achieving planar lensing and off-chip radiation. The proposed arrayed waveguide lens is built on engineering the evanescent coupling between adjacent channels to realize a photonic lattice with an equi-distant ladder of propagation constants that emulates the continuous parabolic index profile. Through coupled-mode analysis …


Anisotropic Magnetoexcitons In Two-Dimensional Transition Metal Trichalcogenide Semiconductors, Roman Ya. Kezerashvili, Anastasia Spiridonova Jul 2022

Anisotropic Magnetoexcitons In Two-Dimensional Transition Metal Trichalcogenide Semiconductors, Roman Ya. Kezerashvili, Anastasia Spiridonova

Publications and Research

Direct and indirect excitons in Rydberg states in transition metal trichalcogenide (TMTC) monolayers, bilayers, and van der Waals (vdW) heterostructures in an external magnetic field are studied within the framework of the effective mass approximation. Binding energies of magnetoexcitons are calculated using the Rytova-Keldysh potential for direct magnetoexcitons and both the Rytova-Keldysh and Coulomb potentials for indirect magnetoexcitons. We report the magnetic field energy contribution to the binding energies and diamagnetic coefficients for magnetoexcitons that depend strongly on the effective mass anisotropy of electrons and holes. The comparative study of TMTCs and phosphorene is given. In TiS3, TiSe3, and ZrSe3 …


Magnetic-Field-Dependent Stimulated Emission From Nitrogen-Vacancy Centers In Diamond, Felix A. Hahl, Lukas Lindner, Xavier Vidal, Tingpeng Luo, Takeshi Ohshima, Shinobu Onoda, Shuya Ishii, Alexander M. Zaitsev, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Jan Jeske Jun 2022

Magnetic-Field-Dependent Stimulated Emission From Nitrogen-Vacancy Centers In Diamond, Felix A. Hahl, Lukas Lindner, Xavier Vidal, Tingpeng Luo, Takeshi Ohshima, Shinobu Onoda, Shuya Ishii, Alexander M. Zaitsev, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Jan Jeske

Publications and Research

Negatively charged nitrogen-vacancy (NV) centers in diamond are promising magnetic field quantum sensors. Laser threshold magnetometry theory predicts improved NV center ensemble sensitivity via increased signal strength and magnetic field contrast. Here, we experimentally demonstrate laser threshold magnetometry. We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532 nm and resonantly seeded at 710 nm. This enables a 64% signal power amplification by stimulated emission. We test the magnetic field dependency of the amplification and thus demonstrate magnetic field-dependent stimulated emission from an NV center ensemble. This emission …


Correlations Between The Rotations And Magnetospheres Of The Terrestrial Planets And The Sun's Formation In Our Solar System, Fred J. Cadieu May 2022

Correlations Between The Rotations And Magnetospheres Of The Terrestrial Planets And The Sun's Formation In Our Solar System, Fred J. Cadieu

Publications and Research

Correlations between the rotations of the terrestrial planets in our solar system and the magnetic field of the Sun have been previously noted. These correlations account for the opposite rotation of Venus as a result of the magnetic field of the Sun being dragged across the conducting core of Venus. Currently the Sun’s magnetic field is not sufficiently strong to account for the proposed correlations. But recently meteorite paleomagnetism measurements have indicated that during the Sun’s formation the magnetic field of the Sun was of sufficient strength to have resulted in the observed correlations. As a part of these correlations …


Dissociative Excitation, Ionization, And Fragmentation Processes For Nitrogen, Oxygen, Methane, And Water Molecules By Electron Bombardment, M. Gochitashvili, R. Lomsazde, D. Kuparashvili, O. Taboridze, Roman Ya. Kezerashvili Apr 2022

Dissociative Excitation, Ionization, And Fragmentation Processes For Nitrogen, Oxygen, Methane, And Water Molecules By Electron Bombardment, M. Gochitashvili, R. Lomsazde, D. Kuparashvili, O. Taboridze, Roman Ya. Kezerashvili

Publications and Research

Electron–impact ionization and fragmentation of molecules are investigated by the chromatography mass-spectrometry device. While the excitation processes are investigated by an optical spectroscopy method. The spectral analysis is performed in the vacuum ultraviolet 50-130 nm spectral regions. The absolute value of the fragmentation cross-section in the dissociative ionization and excitation processes is determined. Measurements are performed in the electron energy range 25-120eV for ionization and 200-500eV for excitation processes respectively.


Superfluidity Of Dipolar Excitons In A Double Layer Of Α -T3 With A Mass Term, Oleg L. Berman, Godfrey Gumbs, Gabriel P. Martins, Paula Fekete Apr 2022

Superfluidity Of Dipolar Excitons In A Double Layer Of Α -T3 With A Mass Term, Oleg L. Berman, Godfrey Gumbs, Gabriel P. Martins, Paula Fekete

Publications and Research

We predict Bose-Einstein condensation and superfluidity of dipolar excitons, formed by electron-hole pairs in spatially separated gapped hexagonal α − T3 (GHAT3) layers. In the α − T3 model, the AB-honeycomb lattice structure is supplemented with C atoms located at the centers of the hexagons in the lattice. We considered the α − T3 model in the presence of a mass term which opens a gap in the energy-dispersive spectrum. The gap opening mass term, caused by a weak magnetic field, plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system. The band structure of GHAT3 …


Physics 315 (Medical Physics), Ronald Koder Apr 2022

Physics 315 (Medical Physics), Ronald Koder

Open Educational Resources

No abstract provided.


Physics 422 (Biophysics), Ronald Koder Apr 2022

Physics 422 (Biophysics), Ronald Koder

Open Educational Resources

No abstract provided.


Nanoscale Hybrid Electrolytes With Viscosity Controlled Using Ionic Stimulus For Electrochemical Energy Conversion And Storage, Sara T. Hamilton, Tony G. Feric, Sahana Bhattacharyya, Nelly M. Cantillo, Steven G. Greenbaum, Thomas A. Zawodzinski, Ah-Hyung Alissa Park Mar 2022

Nanoscale Hybrid Electrolytes With Viscosity Controlled Using Ionic Stimulus For Electrochemical Energy Conversion And Storage, Sara T. Hamilton, Tony G. Feric, Sahana Bhattacharyya, Nelly M. Cantillo, Steven G. Greenbaum, Thomas A. Zawodzinski, Ah-Hyung Alissa Park

Publications and Research

As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO 2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO 2 capture and conversion is desired. Liquid-like nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO 2 and redox-active species. …


A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator, Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang, Jie Xu Jan 2022

A Monolithic 3d Printed Axisymmetric Co-Flow Single And Compound Emulsion Generator, Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang, Jie Xu

Publications and Research

We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could …


Giant Acoustically-Induced Synthetic Hall Voltages In Graphene, Pai Zhao, Chithra H. Sharma, Renrong Liang, Christian Glasenapp, Lev Mourokh, Vadim M. Kovalev, Patrick Huber, Marta Prada, Lars Tiemann, Robert H. Blick Jan 2022

Giant Acoustically-Induced Synthetic Hall Voltages In Graphene, Pai Zhao, Chithra H. Sharma, Renrong Liang, Christian Glasenapp, Lev Mourokh, Vadim M. Kovalev, Patrick Huber, Marta Prada, Lars Tiemann, Robert H. Blick

Publications and Research

Any departure from graphene’s flatness leads to the emergence of artificial gauge fields that act on the motion of the Dirac fermions through an associated pseudomagnetic field. Here, we demonstrate the tunability of strong gauge fields in nonlocal experiments using a large planar graphene sheet that conforms to the deformation of a piezoelectric layer by a surface acoustic wave. The acoustic wave induces a longitudinal and a giant synthetic Hall voltage in the absence of external magnetic fields. The superposition of a synthetic Hall potential and a conventional Hall voltage can annihilate the sample’s transverse potential at large external magnetic …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni Jan 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.


Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon Jan 2022

Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon

Publications and Research

We consider a braneworld scenario in the simplest setting, M4 × S1, with a four-dimensional (4D) Minkowski metric induced on the brane, and establish the possibility of superluminal propagation. If the brane is at rest, the 4D Lorentz symmetry of the brane is exact, but if the brane is in motion, it is broken globally by the compactification. By measuring bulk fields, an observer on the brane sees a slice through a higher-dimensional field profile, which carries an imprint of the extra dimensions even when the brane is at rest. If the brane is in motion, we …


Defining Entanglement Without Tensor Factoring: A Euclidean Hourglass Prescription, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Defining Entanglement Without Tensor Factoring: A Euclidean Hourglass Prescription, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We consider entanglement across a planar boundary in flat space. Entanglement entropy is usually thought of as the von Neumann entropy of a reduced density matrix, but it can also be thought of as half the von Neumann entropy of a product of reduced density matrices on the left and right. The latter form allows a natural regulator in which two cones are smoothed into a Euclidean hourglass geometry. Since there is no need to tensor factor the Hilbert space, the regulated entropy is manifestly gauge invariant and has a manifest state-counting interpretation. We explore this prescription for scalar fields, …