Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Publications and Research

Quantum dots

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni Dec 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen–Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a “probability amplitude.” A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper, we present a new perspective on such determinism. The ideas are based on the equations of motion or “Quantal Newtonian” Laws obeyed by each electron. These Laws, derived from …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni Jan 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni Oct 2018

Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

There are three expressions for the kinetic energy density t(r) expressed in terms of its quantal source, the single‐particle density matrix: tA(r), the integrand of the kinetic energy expectation value; tB(r), the trace of the kinetic energy tensor; tC(r), a virial form in terms of the 'classical' kinetic field. These kinetic energy densities are studied by application to 'artificial atoms' or quantum dots in a magnetic field in a ground and excited singlet state. A comparison with the densities for natural atoms and molecules in their ground state is made. The near nucleus …


Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni Aug 2018

Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni

Publications and Research

Kinetic related ground state properties of a two-electron 2D quantum dot in a magnetic field and a 3D quantum dot (Hooke's atom) are compared in the Wigner high (HEC) and low (LEC) electron correlation regimes. The HEC regime corresponds to low densities sufficient for the creation of a Wigner molecule. The LEC regime densities are similar to those of natural atoms and molecules. The results are determined employing exact closed-form analytical solutions of the Schrödinger-Pauli and Schrödinger equations, respectively. The properties studied are the local and nonlocal quantal sources of the density and the single particle density matrix; the kinetic …