Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Publications and Research

2020

Discipline
Keyword
File Type

Articles 1 - 14 of 14

Full-Text Articles in Physics

Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V Dec 2020

Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V

Publications and Research

Exciton-dipolaritons are investigated as a platform for realizing working elements of a polaritronic transistor. Exciton-dipolaritons are three-way superposition of cavity photons, direct and indirect excitons in a bilayer semiconducting system embedded in an optical microcavity. Using the forced diffusion equation for dipolaritons, we study the room-temperature dynamics of dipolaritons in a transition-metal dichalcogenide (TMD) heterogeneous bilayer. Specifically, we considered a MoSe2-WS2 heterostructure, where a Y-shaped channel guiding the dipolariton propagation is produced. We demonstrate that polaritronic signals can be redistributed in the channels by applying a driving voltage in an optimal direction. Our findings open a route …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


Schrödinger-Pauli Theory Of Electrons: New Perspectives, Viraht Sahni Oct 2020

Schrödinger-Pauli Theory Of Electrons: New Perspectives, Viraht Sahni

Publications and Research

The Schrödinger-Pauli (SP) theory of electrons in an electromagnetic field explicitly accounts for the electron spin moment. The many-electron theory is complemented via a new descriptive perspective viz. that of the individual electron via its equation of motion or ‘Quantal Newtonian’ first law. The law is in terms of ‘classical’ fields whose sources are quantum mechanical expectation values of Hermitian operators taken with respect to the system wave function. The law states that each electron experiences an external and an internal field, the sum of which vanish. The external field is the sum of the binding electrostatic and a Lorentz …


Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau Jul 2020

Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau

Publications and Research

Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efciently refect, absorb or scatter light. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms inspired by natural evolution and performing particular optimizations (maximize refection for a given wavelength, for a broad range of wavelength or maximize the scattering of light), we have retrieved the most stereotypical natural photonic structures. Whether those structures are Bragg mirrors, chirped dielectric mirrors or the gratings on top of …


Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse Jun 2020

Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse

Publications and Research

We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks …


Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles May 2020

Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles

Publications and Research

Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli Mar 2020

Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli

Publications and Research

In electrocoalescence, an electric field is applied to a dispersion of conducting water droplets in a poorly conducting oil to force the droplets to merge in the direction of the field. Electrocoalescence is used in petroleum refining to separate water from crude oil and in droplet-based microfluidics to combine droplets of water in oil and to break emulsions. Using a microfluidic design to generate a two-dimensional (2D) emulsion, we demonstrate that electrocoalescence in an opaque crude oil can be visualized with optical microscopy and studied on an individual droplet basis in a chamber whose height is small enough to make …


Effect Of Direct-Current Magnetic Field On The Specific Absorption Rate Of Metamagnetic Comnsi: A Potential Approach To Switchable Hyperthermia Therapy, K C. Ugochukwu, M M. Sadiq, E S. Biegel, L Meagher, M R. Hill, Karl G. Sandeman, A Haydon, K Suzuki Jan 2020

Effect Of Direct-Current Magnetic Field On The Specific Absorption Rate Of Metamagnetic Comnsi: A Potential Approach To Switchable Hyperthermia Therapy, K C. Ugochukwu, M M. Sadiq, E S. Biegel, L Meagher, M R. Hill, Karl G. Sandeman, A Haydon, K Suzuki

Publications and Research

Materials with 1st order antiferromagnetic (AFM) to high-magnetization (MM) phase transition known for their inverse magnetocaloric effect, abrupt rise in magnetization and magnetoelastic coupling, are promising for application in combined simultaneous diagnosis and targeted cancer therapy. A therapy that combines alternating-current (ac) and direct-current (dc) magnetic fields for simultaneous magnetic hyperthermia therapy (MHT) and magnetic resonance imaging (MRI), using same magnetic particles for heating and as con- trast agents. We report a proof-of-concept study on the induction heating ability of 1st order metamagnetic material with moderate specific absorption rates (SAR) and no tendency for agglomeration, for potential MHT and MRI …


Mode Discrimination In Dissipatively Coupled Laser Arrays, Jiajie Ding, Mohammad-Ali Miri Jan 2020

Mode Discrimination In Dissipatively Coupled Laser Arrays, Jiajie Ding, Mohammad-Ali Miri

Publications and Research

No abstract provided.


Optical Potts Machine Through Networks Of Three-Photon Down-Conversion Oscillators, Mostafa Honari-Latifpour, Mohammad-Ali Miri Jan 2020

Optical Potts Machine Through Networks Of Three-Photon Down-Conversion Oscillators, Mostafa Honari-Latifpour, Mohammad-Ali Miri

Publications and Research

In recent years there has been a growing interest in optical simulation of lattice spin models for applications in classical computing. Here, we propose optical implementation of a three-state Potts spin model by using networks of coupled parametric oscillators with phase tristability. We first show that the cubic nonlinear process of spontaneous three-photon down-conversion is accompanied by a tristability in the phase of the subharmonic signal between three states with 2��/3 phase contrast. The phase of such a parametric oscillator behaves like a three-state spin system. Next, we show that a network of dissipatively coupled three-photon down-conversion oscillators emulates the …


Microspheres With Atomic-Scale Tolerances Generate Hyperdegeneracy, Jacob Kher-Alden, Shai Maayani, Leopoldo L. Martin, Mark Douvidzon, Lev Deych, Tal Carmon Jan 2020

Microspheres With Atomic-Scale Tolerances Generate Hyperdegeneracy, Jacob Kher-Alden, Shai Maayani, Leopoldo L. Martin, Mark Douvidzon, Lev Deych, Tal Carmon

Publications and Research

Degeneracies play a crucial rule in precise scientific measurements as well as in sensing applications. Spherical resonators have a high degree of degeneracy thanks to their highest symmetry; yet, fabricating perfect spheres is challenging because even a stem to hold the sphere breaks the symmetry. Here we fabricate a levitating spherical resonator that is evanescently coupled to a standard optical fiber. We characterize the resonators to exhibit an optical quality factor exceeding a billion, 10 μm radius, and sphericity to within less than 1µ. Using our high quality and sphericity, we experimentally lift degeneracies of orders higher than 200, which …


Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich Jan 2020

Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich

Publications and Research

We consider double gg → g production in the presence of a bias on the unintegrated gluon distribution of the colliding hadrons or nuclei. Such bias could be due to the selection of configurations with a greater number of gluons or higher mean transverse momentum squared or, more generally, due to a modified spectral shape of the gluon distribution in the hadrons. Hence, we consider reweighted functional averages over the stochastic ensemble of small-x gluons. We evaluate explicitly the double inclusive gluon transverse momentum spectrum in high-energy collisions, and their azimuthal correlations, for a few simple examples of biases.