Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Dipolariton Propagation In A Van Der Waals Tmdc With Ψ-Shaped Channel Guides And Buffered Channel Branches, Patrick Serafin, German Kolmakov Mar 2021

Dipolariton Propagation In A Van Der Waals Tmdc With Ψ-Shaped Channel Guides And Buffered Channel Branches, Patrick Serafin, German Kolmakov

Publications and Research

Using a computational approach based on the driven diffusion equation for a dipolariton wave packet, we simulate the diffusive dynamics of dipolaritons in an optical microcavity embedded with a transition metal dichalcogenide (TMDC) heterogeneous bilayer encompassing a Ψ-shaped channel. By considering exciton dipolaritons, which are a three way superposition of direct excitons, indirect excitons and cavity photons; we are able to drive the dipolaritons in our system by the use of an electric voltage and investigate their diffusive properties. More precisely, we study the propagation of dipolaritons present in a MoSe2-WS2 heterostructure, where the dipolariton propagation is …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


An Application Of The Ising Model, Juliano A. Everett Dec 2019

An Application Of The Ising Model, Juliano A. Everett

Publications and Research

Understanding how the Ising model works,what it represents, and how it can be applied to neurology. Given that an Ising model is an Entropy model that could be representative of the firing of neurons, some assumptions of the system are made and then the process is simulated through Monte Carlo methods.


Exploring A Practical Development Of Quantum Computing, Juliano A. Everett, Andrea N. Zambrano, Carlos Aguayza Apr 2019

Exploring A Practical Development Of Quantum Computing, Juliano A. Everett, Andrea N. Zambrano, Carlos Aguayza

Publications and Research

Tasked with describing a Quantum architecture (Superconducting loops), we additionally explored how the chosen architecture is used, developed, and how one could get started in understanding the way in which some quantum algorithms work with this architecture through Python and IBM's tools (Qiskit and IBM Q Experience).


Computational Techniques For Scattering Amplitudes, Juliano A. Everett Dec 2018

Computational Techniques For Scattering Amplitudes, Juliano A. Everett

Publications and Research

Scattering amplitudes in quantum field theory can be described as the probability of a scattering process to happen within a high energy particle interaction, as well as a bridge between experimental measurements and the prediction of the theory.

In this research project, we explore the Standard Model of Particle Theory, it’s representation in terms of Feynman diagrams and the algebraic formulas associated with each combination.

Using the FeynArts program as a tool for generating Feynman diagrams, we evaluate the expressions of a set of physical processes, and explain why these techniques become necessary to achieve this goal.


Comparative Study Of Qubits, Juliano A. Everett, Mubinjon Satymov, Zechariah Ilmot May 2018

Comparative Study Of Qubits, Juliano A. Everett, Mubinjon Satymov, Zechariah Ilmot

Publications and Research

In quantum computing, a quantum bit ("qubit") is a unit of quantum information. A qubit is a two-level quantum system. The developing of qubits with optimal properties, related to quantum entanglement and possibilities of control the states of qubits, is very important for quantum computing applications. We analyzed various types of qubits. There are at least five major quantum computing approaches being explored worldwide: silicon spin qubits, ion traps, superconducting loops, diamond vacancies and topological qubits. We compared the advantages and disadvantages in the properties of all these qubits for applications for quantum computing. We analyzed possible strategies to improve …


Quirky, Not Quacky: Quantum Computing For Librarians, Jill Cirasella Jan 2009

Quirky, Not Quacky: Quantum Computing For Librarians, Jill Cirasella

Publications and Research

This slideshow introduces librarians and non-scientists to the relatively young field of quantum computing.