Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical, Nonlinear, and Soft Matter Physics

Biological

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini Dec 2012

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini

Dartmouth Scholarship

We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information.

We explore this centrality in the context of several examples. While for sparse unweighted net- works 1-spectral centrality behaves similarly to other standard centralities, for dense weighted net- works they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) …


Exact Solutions For Social And Biological Contagion Models On Mixed Directed And Undirected, Degree-Correlated Random Networks, Joshua L. Payne, Kameron Decker Harris, Peter Sheridan Dodds Jun 2011

Exact Solutions For Social And Biological Contagion Models On Mixed Directed And Undirected, Degree-Correlated Random Networks, Joshua L. Payne, Kameron Decker Harris, Peter Sheridan Dodds

Dartmouth Scholarship

We derive analytic expressions for the possibility, probability, and expected size of global spread- ing events starting from a single infected seed for a broad collection of contagion processes acting on random networks with both directed and undirected edges and arbitrary degree-degree correla- tions. Our work extends previous theoretical developments for the undirected case, and we provide numerical support for our findings by investigating an example class of networks for which we are able to obtain closed-form expressions.


Direct, Physically-Motivated Derivation Of The Contagion Condition For Spreading Processes On Generalized Random Networks, Peter Sheridan Dodds, Kameron Decker Harris, Joshua L. Payne May 2011

Direct, Physically-Motivated Derivation Of The Contagion Condition For Spreading Processes On Generalized Random Networks, Peter Sheridan Dodds, Kameron Decker Harris, Joshua L. Payne

Dartmouth Scholarship

For a broad range of single-seed contagion processes acting on generalized random networks, we derive a unifying analytic expression for the possibility of global spreading events in a straightforward, physically intuitive fashion. Our reasoning lays bare a direct mechanical understanding of an archetypal spreading phenomena that is not evident in circuitous extant mathematical approaches.