Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Exclusion Statistics For Particles With A Discrete Spectrum, Stéphane Ouvry, Alexios P. Polychronakos Jan 2021

Exclusion Statistics For Particles With A Discrete Spectrum, Stéphane Ouvry, Alexios P. Polychronakos

Publications and Research

We formulate and study the microscopic statistical mechanics of systems of particles with exclusion statistics in a discrete one-body spectrum. The statistical mechanics of these systems can be expressed in terms of effective single-level grand partition functions obeying a generalization of the standard thermodynamic exclusion statistics equation of state. We derive explicit expressions for the thermodynamic potential in terms of microscopic cluster coefficients and show that the mean occupation numbers of levels satisfy a nesting relation involving a number of adjacent levels determined by the exclusion parameter. We apply the formalism to the harmonic Calogero model and point out a …


Optical Potts Machine Through Networks Of Three-Photon Down-Conversion Oscillators, Mostafa Honari-Latifpour, Mohammad-Ali Miri Jan 2020

Optical Potts Machine Through Networks Of Three-Photon Down-Conversion Oscillators, Mostafa Honari-Latifpour, Mohammad-Ali Miri

Publications and Research

In recent years there has been a growing interest in optical simulation of lattice spin models for applications in classical computing. Here, we propose optical implementation of a three-state Potts spin model by using networks of coupled parametric oscillators with phase tristability. We first show that the cubic nonlinear process of spontaneous three-photon down-conversion is accompanied by a tristability in the phase of the subharmonic signal between three states with 2��/3 phase contrast. The phase of such a parametric oscillator behaves like a three-state spin system. Next, we show that a network of dissipatively coupled three-photon down-conversion oscillators emulates the …


An Application Of The Ising Model, Juliano A. Everett Dec 2019

An Application Of The Ising Model, Juliano A. Everett

Publications and Research

Understanding how the Ising model works,what it represents, and how it can be applied to neurology. Given that an Ising model is an Entropy model that could be representative of the firing of neurons, some assumptions of the system are made and then the process is simulated through Monte Carlo methods.


Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko Nov 2017

Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko

Publications and Research

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.