Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Machine Learning-Driven Surrogate Models For Electrolytes, Tong Gao Jan 2022

Machine Learning-Driven Surrogate Models For Electrolytes, Tong Gao

Dissertations, Master's Theses and Master's Reports

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts for the effect of the physical properties of ionic liquids (ILs) on lithium dendrite growth. Our simulations show that the size asymmetry between the cation and anion, the dielectric constant, and the volume fraction of ILs are critical factors to significantly suppress the dendrite growth, primarily due to substantial changes in electric-field screening. Specifically, the volume fraction of ILs has the optimal value for dendrite suppression. The present simulation method indicates potential challenges for the model extension to macroscopic systems. Therefore, we also …


A Surrogate Model Of Molecular Dynamics Simulations For Polar Fluids: Supervised Learning Methods For Molecular Polarization And Unsupervised Methods For Phase Classification, Zackerie W. Hjorth Jan 2022

A Surrogate Model Of Molecular Dynamics Simulations For Polar Fluids: Supervised Learning Methods For Molecular Polarization And Unsupervised Methods For Phase Classification, Zackerie W. Hjorth

Dissertations, Master's Theses and Master's Reports

Molecular Dynamic (MD) simulation is a standard computational tool in soft matter physics. While very powerful, it is computationally expensive, leading to some simulations taking days or even weeks to complete depending on the size of your computer cluster. Finding computationally cheap surrogate models which can learn the output features of MD simulation is therefore highly motivated. In this report I explore the use of deep neural network ensembles as well as support vector machine regressors as surrogate models for MD simulation. From the output of the surrogate models, we can then employ unsupervised learning methods to get insight into …


The Solvation Energy Of Ions In A Stockmayer Fluid, Cameron John Shock Jan 2019

The Solvation Energy Of Ions In A Stockmayer Fluid, Cameron John Shock

Dissertations, Master's Theses and Master's Reports

The solvation of ions in polar solvents has been a long studied system since the early twentieth century. A common technique to calculate the energy associated with ion solvation is the Born Solvation energy equation. This equation assumes an ion is placed in an incompressible, homogeneous dielectric, which is not necessarily representative of a real system. In this work the Stockmayer Fluid Model is used in a molecular dynamics simulation through the software LAMMPS to check the quantitative correctness of the Born equation. It is also shown how solvation energies of ions placed in polymerized and non-polymerized solvents differ. It …


Non-Hermitian Matter-Wave Mixing In Bose-Einstein Condensates: Dissipation-Induced Amplification, S. Wuster, Ramy El-Ganainy Jul 2017

Non-Hermitian Matter-Wave Mixing In Bose-Einstein Condensates: Dissipation-Induced Amplification, S. Wuster, Ramy El-Ganainy

Department of Physics Publications

We investigate the nonlinear scattering dynamics in interacting atomic Bose-Einstein condensates under non-Hermitian dissipative conditions. We show that, by carefully engineering a momentum-dependent atomic loss profile, one can achieve matter-wave amplification through four-wave mixing in a quasi-one-dimensional nearly-free-space setup—a process that is forbidden in the counterpart Hermitian systems due to energy mismatch. Additionally, we show that similar effects lead to rich nonlinear dynamics in higher dimensions. Finally, we propose a physical realization for selectively tailoring the momentum-dependent atomic dissipation. Our strategy is based on a two-step process: (i) exciting atoms to narrow Rydberg or metastable excited states, and (ii) introducing …