Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

Photoionization

University of Nevada, Las Vegas

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

K-Shell X-Ray Spectroscopy Of Atomic Nitrogen, M. M. Sant'anna, Gunnar Ohrwall, Wayne C. Stolte, Alfred S. Schlachter, Dennis W. Lindle, B. M. Mclaughlin Mar 2012

K-Shell X-Ray Spectroscopy Of Atomic Nitrogen, M. M. Sant'anna, Gunnar Ohrwall, Wayne C. Stolte, Alfred S. Schlachter, Dennis W. Lindle, B. M. Mclaughlin

Chemistry and Biochemistry Faculty Research

Absolute K-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Because of the difficulty of creating a target of neutral atomic nitrogen, no high-resolution K-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s → np resonance features throughout the threshold region. An experimental value of 409.64 ± 0.02 eV was determined for the K-shell binding energy.


Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield Apr 1998

Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield

Chemistry and Biochemistry Faculty Research

Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge (~2.8 keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6ơ* antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cln1 ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). [S1050-2947(98)03604-X]


Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle Aug 1990

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction.