Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun Dec 2012

Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun

Doctoral Dissertations

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials because they are intimately connected to charge, structure, and magnetism, and a quantitative analysis of their behavior can reveal microscopic aspects of chemical bonding and spin-phonon coupling. To investigate these effects, we measured infrared vibrational properties of bulk and nanoscale MoS2 [molybdenum disulfide], MnO [manganese(II) oxide], and CoFe2O4 [cobalt iron oxide]. From an analysis of frequencies, oscillator strengths, and high-frequency dielectric constants, we extracted Born and local effective charges, and polarizability for MoS2 and MnO. For MoS2 nanoparticles, in …


Confinement Effects Of Solvation On A Molecule Physisorbed On A Metal Particle, Jacob Fosso Tande Dec 2012

Confinement Effects Of Solvation On A Molecule Physisorbed On A Metal Particle, Jacob Fosso Tande

Doctoral Dissertations

We describe and present results of the implementation of the surface and volume polarization for electrostatics~(SVPE) and the iso-density surface solvation models. Unlike most other implementation of the solvation models where the solute and the solvent are described with multiple numerical representation, our implementation uses a multiresolution, adaptive multiwavelet basis to describe both solute and the solvent. This requires reformulation to use integral equations throughout as well as a conscious management of numerical properties of the basis.

Likewise, we investigate the effects of solvation on the static properties of a molecule physisorbed on a spherical particle, modeled as a polarizable …


Structure And Chemistry Of Model Catalysts In Ultrahigh Vacuum, Joshua D. Walker Dec 2012

Structure And Chemistry Of Model Catalysts In Ultrahigh Vacuum, Joshua D. Walker

Theses and Dissertations

The study of catalysis is a key area of focus not only in the industrial sector but also in the nature and biological systems. The market for catalysis is a multi-billion dollar industry. Many of the materials and products we use on a daily basis are formed through a catalytic process. The quest to understanding and improving catalytic mechanisms is ongoing. Many model catalysts use transition metals as a support for chemical reactions to take place due to their selectivity and activity. Palladium, gold, and copper metals are studied in this work and show the ability to be catalytically reactive. …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


Applications Of Density Functional Theory In Materials Science And Engineering, Manuel Alvarado Jan 2012

Applications Of Density Functional Theory In Materials Science And Engineering, Manuel Alvarado

Open Access Theses & Dissertations

Density Functional Theory (DFT) is a powerful tool that can be used to model various systems in materials science. Our research applies DFT to two problems of interest. First, an organic/inorganic complex dye system known as a Mayan pigment is modeled to determine chemical binding sites, verifying each model with physical data such as UV/Vis spectra. Preliminary studies on palygorskite-based mayan pigments (mayacrom blue, mayacrom purple) show excellent agreement with experimental studies when using a dimer dye geometry binding with tetrahedrally-coordinated aluminum impurity sites in palygorksite. This approach is applied to a sepiolite-based organic/inorganic dye system using thioindigo attached to …