Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

"Probing The Transition State Region In Catalytic Co Oxidation On Ru" Data Files, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, W. F. Schlotter, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson Feb 2015

"Probing The Transition State Region In Catalytic Co Oxidation On Ru" Data Files, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, W. F. Schlotter, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Data Sets

Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on Ru initiated by an optical laser pulse. On a timescale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface allowing the reactants to collide and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond-formation between CO and O with a distribution of OC—O bond lengths close to the transition state (TS ...


Probing The Transition State Region In Catalytic Co Oxidation On Ru, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson Feb 2015

Probing The Transition State Region In Catalytic Co Oxidation On Ru, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on Ru initiated by an optical laser pulse. On a timescale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface allowing the reactants to collide and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond-formation between CO and O with a distribution of OC—O bond lengths close to the transition state (TS ...


Communication: Bubbles, Crystals, And Laser-Induced Nucleation, Brandon C. Knott, Jerry L. Larue, Alec M. Wodtke, Michael F. Doherty, Baron Peters May 2011

Communication: Bubbles, Crystals, And Laser-Induced Nucleation, Brandon C. Knott, Jerry L. Larue, Alec M. Wodtke, Michael F. Doherty, Baron Peters

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2bubblenucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals.


Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou Sep 2010

Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Clean hydrogen production is highly desirable for future energy needs, making the understanding of molecular-level phenomena underlying photocatalytic hydrogen production both fundamentally and practically important. Water splitting on pure TiO2 is inefficient, however, adding sacrificial methanol could significantly enhance the photocatalyzed H2 production. Therefore, understanding the photochemistry of methanol on TiO2 at the molecular level could provide important insights to its photocatalytic activity. Here, we report the first clear evidence of photocatalyzed splitting of methanol on TiO2 derived from time-dependent two-photon photoemission (TD-2PPE) results in combination with scanning tunneling microscopy (STM). STM tip induced molecular manipulation ...


A Surface Femtosecond Two-Photon Photoemission Spectrometer For Excited Electron Dynamics And Time-Dependent Photochemical Kinetics, Zefeng Ren, Chuanyao Zhou, Zhibo Ma, Chun-Lei Xhao, Xinchun Mao, Dongxu Dai, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Xueming Yang Jun 2010

A Surface Femtosecond Two-Photon Photoemission Spectrometer For Excited Electron Dynamics And Time-Dependent Photochemical Kinetics, Zefeng Ren, Chuanyao Zhou, Zhibo Ma, Chun-Lei Xhao, Xinchun Mao, Dongxu Dai, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Xueming Yang

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri- cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies ...


Inverse Velocity Dependence Of Vibrationally Promoted Electron Emission From A Metal Surface, N. H. Nahler, J. D. White, Jerry L. Larue, Daniel J. Auerbach, Alec M. Wodtke Aug 2008

Inverse Velocity Dependence Of Vibrationally Promoted Electron Emission From A Metal Surface, N. H. Nahler, J. D. White, Jerry L. Larue, Daniel J. Auerbach, Alec M. Wodtke

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

All previous experimental and theoretical studies of molecular interactions at metal surfaces show that electronically nonadiabatic influences increase with molecular velocity. We report the observation of a nonadiabatic electronic effect that follows the opposite trend: The probability of electron emission from a low–work function surface—Au(111) capped by half a monolayer of Cs—increases as the velocity of the incident NO molecule decreases during collisions with highly vibrationally excited NO(X2π½, V = 18; V is the vibrational quantum number of NO), reaching 0.1 at the lowest velocity studied. We show that these results are ...