Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

2019

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 26 of 26

Full-Text Articles in Physics

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison Dec 2019

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison

Publications

An investigation on the propagation of underground-explosion-generated infrasonic waves is carried out via numerical simulations of the equations of fluid dynamics. More specifically, the continuity, momentum, and energy conservation equations are solved along with the Herzfeld-Rice equations in order to take into account the effects of vibrational relaxation phenomena. The radiation of acoustic energy by the ground motion caused by underground explosions is initiated by enforcing the equality, at ground level, between the component of the air velocity normal to the Earth's surface and the normal velocity of the ground layer. The velocity of the ground layer is defined ...


The Variability Of High-Frequency Motions And Their Interactions With The Mesoscale On The Mississippi Shelf, Jordan Earls Dec 2019

The Variability Of High-Frequency Motions And Their Interactions With The Mesoscale On The Mississippi Shelf, Jordan Earls

Master's Theses

In this study, we examine the spatial and temporal variability of high-frequency and low-frequency motions across the Mississippi Shelf and how the high-frequency motions are modulated by low-frequency mesoscale motions. For this purpose, we use Acoustic Doppler Current Profiler (ADCP) measurements collected at nearshore (23 m), mid-shelf (60 m), and shelf break (88 m) stations. High-frequency motions are defined as motions with periods less than 36 hours, whereas mesoscale motions have larger periods. The collected datasets are analyzed through bandpass filtering, least square harmonic analysis, spectral analysis, and empirical orthogonal functions (EOF). We find that along-shelf barotropic mesoscale motions contain ...


Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu Oct 2019

Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu

Mechanical Engineering Publications

Solar energy has promising potential for building sustainable society. Conversion of solar energy into solar fuels plays a crucial role in overcoming the intermittent nature of the renewable energy source. A photoelectrochemical (PEC) cell that employs semiconductor as photoelectrode to split water into hydrogen or fixing carbon dioxide (CO2) into hydrocarbon fuels provides great potential to achieve zero-carbon-emission society. A proper design of these semiconductor photoelectrodes thus directly influences the performance of the PEC cell. In this review, we investigate the strategies that have been put towards the design of efficient photoelectrodes for PEC water splitting and CO2 reduction in ...


Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni Aug 2019

Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni

Michigan Tech Publications

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after ...


Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage Jul 2019

Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage

Electronic Thesis and Dissertation Repository

Water vapor is the most dominant greenhouse gas in Earth's atmosphere. It is highly variable and its variations strongly depend on changes in temperature. Atmospheric water vapor can be expressed as relative humidity (RH), the ratio of the partial pressure of water vapor in the mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a given temperature. Liquid water can exist as super-cooled water for temperatures between 0C to -38C. Thus, RH can be measured either relative to water (RHw) or to ice (RHi). RHi measurements are important in the upper tropospheric ...


A Study On Homogeneous Sheared Stably Stratified Turbulence, Gavin Portwood Jul 2019

A Study On Homogeneous Sheared Stably Stratified Turbulence, Gavin Portwood

Doctoral Dissertations

Homogeneous sheared and stably stratified turbulence is considered as a fundamental flow relevant to the study of geophysical turbulence and, generally, anisotropic turbulence. Numerical experiments are performed via high resolution direct numerical simulation (DNS) in a geophysically-relevant parameter space previously inaccessible to simulation. Turbulent dynamics relevant to the modeling of geophysical hydrodynamics are investigated as a function of mean flow and fluid parameters.

An active tuning scheme is implemented to induce temporally stationary turbulent kinetic energy in order to evaluate turbulence that is statistically independent of initial conditions and spatio-temporally homogeneous. Subject to this constraint, the parametric dependence of the ...


Application Of The Optimal Estimation Method (Oem) To Retrieve Relative Humidity From Raman Lidar Backscatter Measurements., Shayamila N. Mahagammulla Gamage, Robert Sica, Alexander Haefele Jun 2019

Application Of The Optimal Estimation Method (Oem) To Retrieve Relative Humidity From Raman Lidar Backscatter Measurements., Shayamila N. Mahagammulla Gamage, Robert Sica, Alexander Haefele

Western Research Forum

Accurate measurements of relative humidity (RH) vertical profiles in the atmosphere is important for understanding the earth's weather and the climate system. RH represent the current state of the water vapor in the atmosphere with respect to the ambient air related to saturation. Even minor changes of the RH in the lower atmosphere has a large impact of the global circulation and cloud formation. Due to its high variability RH measurements in the lower atmosphere is significantly challenging. Raman lidar is one of the potential tools that can provide vertical profiles of RH. Typically, temperature and water vapor mixing ...


Power-Law Scaling In The Internal Variability Of Cumulus Cloud Size Distributions Due To Subsampling And Spatial Organization, R. A. J. Neggers, P. J. Griewank, Thijs Heus Jun 2019

Power-Law Scaling In The Internal Variability Of Cumulus Cloud Size Distributions Due To Subsampling And Spatial Organization, R. A. J. Neggers, P. J. Griewank, Thijs Heus

Physics Faculty Publications

In this study, the spatial structure of cumulus cloud populations is investigated using three-dimensional snapshots from large-domain LES experiments. The aim is to understand and quantify the internal variability in cloud size distributions due to subsampling effects and spatial organization. A set of idealized shallow cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing marine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly complete. A strong power-law scaling is found in the relation between ...


Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer May 2019

Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer

Chemistry Faculty Publications

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed ...


Turbulence-Induced Cloud Voids: Observation And Interpretation, Katarzyna Karpinska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, Eberhard Bodenschatz Apr 2019

Turbulence-Induced Cloud Voids: Observation And Interpretation, Katarzyna Karpinska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, Eberhard Bodenschatz

Michigan Tech Publications

The phenomenon of “cloud voids”, i.e., elongated volumes inside a cloud that are devoid of droplets, was observed with laser sheet photography in clouds at a mountain-top station. Two experimental cases, similar in turbulence conditions yet with diverse droplet size distributions and cloud void prevalence, are reported. A theoretical explanation is proposed based on the study of heavy inertial sedimenting particles inside a Burgers vortex. A general conclusion regarding void appearance is drawn from theoretical analysis. Numerical simulations of polydisperse droplet motion with realistic vortex parameters and Mie scattering visual effects accounted for can explain the presence of voids ...


Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli Apr 2019

Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli

Physics

No abstract provided.


Estimating Coastal Water Turbidity Using Viirs Nighttime Measurement, Chih-Wei Huang Mar 2019

Estimating Coastal Water Turbidity Using Viirs Nighttime Measurement, Chih-Wei Huang

Graduate Theses and Dissertations

Coastal water turbidity is a key environmental factor that influences the relative clarity of the water, which therefore reduces sunlight penetration. The comprehensive spatial and temporal coverage of remote sensing allows mapping of water turbidity near the coast. Even in locations where time-consuming and expensive conventional turbidity monitoring programs exist, local technological limitations prevent complete coverage. Traditional optical satellite techniques using the visible band also have limitations in monitoring turbidity due to non-optimal observing conditions such as clouds, sun-glint, and thick aerosols. In this study, in order to complement the daytime satellite measurements, I used the data from Visible Infrared ...


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic Particle Events, Joseph F. Round Mar 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic Particle Events, Joseph F. Round

Theses and Dissertations

Past studies of heavy ions (Z>2) in large (E>10 MeV/nuc) gradual solar energetic particle (SEP) events have focused on elemental abundances relative to those of a single element, such as Fe or O, and have often neglected ionized H (the primary element used for space weather purposes). This work analyzes SEP abundances in a group of 15 large gradual SEP events from 2000 to 2015 across the energy range of 13.5-50.7 MeV. Hourly flux averages of He, C, O, Mg and Fe from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) are compared to ...


Quantifying Uncertainty Of Ensemble Transport And Dispersion Simulations Using Hysplit, Daniel W. Bazemore Mar 2019

Quantifying Uncertainty Of Ensemble Transport And Dispersion Simulations Using Hysplit, Daniel W. Bazemore

Theses and Dissertations

Uncertainty associated with determining the source location of nuclear pollutants in the atmosphere after a nuclear fallout using a numerical model is difficult to determine. Uncertainty can originate from input data (meteorological and emissions), internal model error, physics parameterizations, and stochastic processes. This study uses the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model with data from the 1983 Cross Appalachian Tracer Experiment (CAPTEX) (Ferber et al. 1986) and simulating six nuclear detonations (Rolph et al. 2014) to quantify and communicate uncertainty in ensemble dispersion simulations. This is accomplished by utilizing an ensemble of forward trajectory simulations varying initial conditions ...


Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch Mar 2019

Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch

Theses and Dissertations

A global, multi-year comparison of low and mid-latitude COSMIC GPS radio occultation (RO) sporadic-E (Es) plasma frequency and altitude and Digisonde blanketing frequency (fbEs) and altitude within 150 km and 30 minutes of each other. RO methods used to estimate the intensity of the Es layer include the scintillation index S4, total electron content (TEC) with both a constant and variable Es cloud thickness, and an Abel transform. The S4 and TEC with varying thickness techniques both under-represent the fbEs values while the TEC with constant thickness and Abel transform better estimate Digisonde fbEs values. All RO ...


Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick Mar 2019

Source Term Estimation Of Atmospheric Pollutants Using An Ensemble Of Hysplit Concentration Simulations, Casey L. Zoellick

Theses and Dissertations

In support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and nuclear event detection, this study works toward source term estimation (STE) of dispersive pollutants using a novel method|an ensemble of forward trajectory concentration simulations using a meteorology-coupled dispersion model. Traditionally a mathematically and physically rigorous problem, STE of a plume of atmospheric pollutants can be solved in a variety of ways depending on what is known regarding the emission, but little has been studied on the sensitivity between the horizontal resolution of the meteorology data in relation to the dispersion model and the results derived from known concentrations at multiple ...


Measurement Of Solar Spectral Irradiance And Surface Ozone At Carrollton, Georgia, Usa, During The Great American Eclipse On 21 August 2017, Kirthi Tennakone, L Ajith Desilva, Charles A. Zander*, Shea Rose, Austin B. Kerlin Mar 2019

Measurement Of Solar Spectral Irradiance And Surface Ozone At Carrollton, Georgia, Usa, During The Great American Eclipse On 21 August 2017, Kirthi Tennakone, L Ajith Desilva, Charles A. Zander*, Shea Rose, Austin B. Kerlin

Georgia Journal of Science

Measurements conducted at the University of West Georgia, Carrollton, Georgia, during the time of the solar eclipse of 21st August 2017 demonstrated that the integrated spectral irradiance in defined wavelength ranges in the ultraviolet and visible calculated as a fraction of the total irradiance reached a minimum at maximum obscuration of the Sun, whereas in an infrared range it was maximum. The method of analysis adopted supports the view that the changes in spectral irradiance during highly obscured partial phases is a consequence of limb darkening. In a surface ozone measurement, a minimum in ozone concentration occurred 30 +_ ...


Data Supporting The Paper "Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations", Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn R. Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra Dubey, Allison Aiken, Rajan K. Chakrabarty, Hans Moosmüller, Timothy B. Onasch, Rahul A. Zaveri, Barbara Scarnato, Paolo Fialho, Claudio Mazzoleni Feb 2019

Data Supporting The Paper "Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations", Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn R. Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra Dubey, Allison Aiken, Rajan K. Chakrabarty, Hans Moosmüller, Timothy B. Onasch, Rahul A. Zaveri, Barbara Scarnato, Paolo Fialho, Claudio Mazzoleni

Department of Physics Publications

No abstract provided.


Data Supporting The Paper "Scaling Of An Atmospheric Model To Simulate Turbulence And Cloud Microphysics In The Pi Chamber", Subin Thomas, Mikhail S. Ovchinnikov, Fan Yang, Dennis Van Der Voort, Will Cantrell, Steven K. Krueger, Raymond Shaw Feb 2019

Data Supporting The Paper "Scaling Of An Atmospheric Model To Simulate Turbulence And Cloud Microphysics In The Pi Chamber", Subin Thomas, Mikhail S. Ovchinnikov, Fan Yang, Dennis Van Der Voort, Will Cantrell, Steven K. Krueger, Raymond Shaw

Department of Physics Publications

No abstract provided.


Thermal Structure Of The Mesopause Region During The Wadis-2 Rocket Campaign, Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, Franz-Josef Lübken Jan 2019

Thermal Structure Of The Mesopause Region During The Wadis-2 Rocket Campaign, Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, Franz-Josef Lübken

Publications

This paper presents simultaneous temperature measurements by three independent instruments during the WADIS-2 rocket campaign in northern Norway (69 N, 14 E) on 5 March 2015. Vertical profiles were measured in situ with the CONE instrument. Continuous mobile IAP Fe lidar (Fe lidar) measurements during a period of 24 h, as well as horizontally resolved temperature maps by the Utah State University (USU) Advanced Mesospheric Temperature Mapper (AMTM) in the mesopause region, are analysed. Vertical and horizontal temperature profiles by all three instruments are in good agreement. A harmonic analysis of the Fe lidar measurements shows the presence of waves ...


Temporal And Spatial Scaling Of Dissipation Under Non-Breaking Surface Waves, Mingming Shao, Brian K. Haus, Darek Bogucki, Mohammad Barzegar Jan 2019

Temporal And Spatial Scaling Of Dissipation Under Non-Breaking Surface Waves, Mingming Shao, Brian K. Haus, Darek Bogucki, Mohammad Barzegar

Supplementary Data and Tools

This dataset is associated to the NSF OCE/Physical Oceanography funded project “Laboratory Investigation of Turbulence Generation by Surface Waves”. There are three papers in preparation that will refer to data contained within this archive. The overarching goal of this project was to address a significant knowledge gap regarding the turbulent dissipation of non-breaking surface waves. To accomplish this, a comprehensive study in the SUrge-STructure-Atmosphere-INteraction (SUSTAIN) wind-wave laboratory at the University of Miami was conducted. A combination of established measurement approaches (Particle Image Velocimetry (PIV) and Vertical Microstructure Profiler (VMP)) and new technologies (Optical Turbulence Sensor (OTS)) have been used ...


Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh Jan 2019

Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh

Secondary Level Resources

This book was created to assist students with their understanding of how science occurs in Florida. When teaching science or any subject it’s important to remember to begin with the concrete and then move to the abstract. I have found that it has helped my students when I begin by teaching science concepts in a concrete manner and expand from there. For example, when I taught about topographic maps, the students were much more successful in their learning when I started with local topographic maps that included the school and the surrounding area than with places that had mountains ...


Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez Jan 2019

Light Propagation Through A Turbulent Cloud: Comparison Of Measured And Computed Extinction, Eduardo Rodriguez-Feo Bermudez

Dissertations, Master's Theses and Master's Reports

Remote sensing techniques used for measurement of atmospheric cloud properties operate under the notion that light extinction caused by scattering and absorption is exponential due to Beer-Lambert law. This is expected to be valid for a uni-form medium with no spatial correlations between particle position. The aim of this research was to show that under turbulent conditions, cloud droplets cannot be interpreted as non-correlated, and in turn will exhibit a lower than exponential light decay from scattering. The research took place at the MTU π-Chamber laboratory. A temperature difference between the floor and ceiling of the chamber was applied to ...


Aerosol-Cloud Interactions In Turbulent Clouds: A Combined Cloud Chamber And Theoretical Study, Kamal Kant Chandrakar Jan 2019

Aerosol-Cloud Interactions In Turbulent Clouds: A Combined Cloud Chamber And Theoretical Study, Kamal Kant Chandrakar

Dissertations, Master's Theses and Master's Reports

The influence of aerosol concentration on the cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. In chapter 2, moist Rayleigh-Bénard convection with water saturated boundaries is explored using a one-dimensional-turbulence model. This study provides some background about supersaturation statistics in moist convection. Chapters 3 - 7 discuss the experimental and theoretical investigation of aerosol-cloud interactions and cloud droplet size-distributions in turbulent conditions. The experiments are performed in a way so that steady-state microphysics are achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the ...


On Atmospheric Lapse Rates, Nihad E. Daidzic Jan 2019

On Atmospheric Lapse Rates, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

We have derived and summarized and most important atmospheric temperature lapse rates. ALRs essentially govern vertical atmospheric air stability and creation of some cloud types. The sensitivity analysis of various atmospheric lapse rates and their dependence on actual ideal-gas air properties and gravitational attraction was conducted for the first time to the best of our knowledge. SALR, which has DALR as the upper asymptote, showed steepest decrease at around 9 degrees Celsius then flattening out and apparently approaching another asymptotic solution which has not been investigated as it falls outside of the terrestrial temperature range. ISA lapse rates are adopted ...


Surface Waves Over Currents And Uneven Bottom, Alan Compelli, Rossen Ivanov, Calin I. Martin, Michail D. Todorov Jan 2019

Surface Waves Over Currents And Uneven Bottom, Alan Compelli, Rossen Ivanov, Calin I. Martin, Michail D. Todorov

Articles

The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution ...