Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physics

Centrality Effects On Heavy-Flavor Quark Production And Invariant Yield In Phenix Proton–Gold Collisions At Center-Of-Mass Energy 200 Gev, And Assembly, Testing, Calibration, And Installation Of The Sphenix Hadronic Calorimeters, Daniel Richford Sep 2023

Centrality Effects On Heavy-Flavor Quark Production And Invariant Yield In Phenix Proton–Gold Collisions At Center-Of-Mass Energy 200 Gev, And Assembly, Testing, Calibration, And Installation Of The Sphenix Hadronic Calorimeters, Daniel Richford

Dissertations, Theses, and Capstone Projects

Hadrons created in heavy-ion collisions interact with the open color-charge of the quark-gluon plasma through their constituent quarks. The medium imparts substantial modifications to heavy-flavor hadrons' momentum spectra. For collisions of small systems, the centrality of those collisions affects both the production of heavy-quarks and the medium modifications that the heavy-quarks experience. This analysis uses the PHENIX detector at the Relativistic Heavy Ion Collider, which collected data from proton--gold collisions in 2015, with a trigger to preference the collection of the five-percent most-central collisions. This analysis uses the distance-of-closest-approach of electron tracks to study semileptonic decays from charm and bottom …


Phase Transitions And Thermal Stability Of The Magnetic Dual Chiral Density Wave Phase In Cold, Dense Qcd, William G. Gyory Sep 2023

Phase Transitions And Thermal Stability Of The Magnetic Dual Chiral Density Wave Phase In Cold, Dense Qcd, William G. Gyory

Dissertations, Theses, and Capstone Projects

The correct description of strongly interacting matter at extreme densities and low temperatures remains poorly understood. We analyze the magnetic dual chiral density wave (MDCDW) phase, an inhomogeneous chiral condensate that arises in cold, dense quark matter in a magnetic field. We first review the background theory and derive the free energy of the condensate. Then we show how the phase transitions can be studied using a generalized Ginzburg-Landau expansion, and we derive a convenient all-orders formula for the coefficients. Using these tools, we compute the order parameters, critical temperature, and threshold temperature over a range of chemical potentials and …


One-Loop Corrections To Dihadron Production In Dis At Small X, Filip Bergabo Feb 2023

One-Loop Corrections To Dihadron Production In Dis At Small X, Filip Bergabo

Dissertations, Theses, and Capstone Projects

We calculate the one-loop corrections to dihadron production in Deep Inelastic Scattering (DIS) at small x using the Color Glass Condensate formalism. We show that all UV and soft singularities cancel while the collinear divergences are absorbed into quark and anti quark-hadron fragmentation functions. Rapidity divergences lead to JIMWLK evolution of dipoles and quadrupoles describing multiple-scatterings of the quark anti-quark dipole on the target proton/nucleus. The resulting cross section is finite and can be used for phenomenological studies of dihadron angular correlations at small x in a future Electron-Ion Collider (EIC).


The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang Sep 2022

The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang

Dissertations, Theses, and Capstone Projects

It has long been observed experimentally, from previous heavy-flavor electron measurements, that heavy quarks are subject to substantial modifications of their momentum spectrum. Using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC), measurements of the production of open heavy flavor hadrons with charm and bottom quarks in p+Au collisions at 200 GeV are studied and presented in this thesis. Distance of closest approach analysis of electron tracks is used to study the semileptonic decay electrons from charm and bottom hadrons. The results include invariant yield and fraction of bottom electrons. In addition to the p+p and Au+Au collisions’ …


Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill Sep 2022

Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill

Dissertations, Theses, and Capstone Projects

In the context of neutron stars (NS), dense-magnetized quark and hadron models have been well studied under the assumption that the system's pressures are isotropic. However, the pressures determined from semi-classical statistical averaging of the energy momentum tensor in the presence of a uniform background magnetic field are anisotropic with different pressures arising along and perpendicular to the magnetic field direction. Since large magnetic fields are expected to be present in the interior of NS, it is important to understand the roll the pressure anisotropy plays. While considering the pressure anisotropy, we revisit some important calculations in NS physics.

We …


Removal Of Anisotropic Background From Neutral Pion And Tagged Direct Photon–Hadron Correlations Of Au+Au 200 Gev Collisions, Zachary Rowan Sep 2022

Removal Of Anisotropic Background From Neutral Pion And Tagged Direct Photon–Hadron Correlations Of Au+Au 200 Gev Collisions, Zachary Rowan

Dissertations, Theses, and Capstone Projects

A reaction plane dependent event mixing technique is developed to remove the collective background from two particle correlation measurements in heavy ion collisions. The method eliminates the need for any external flow measurements and is well suited for studying the path length dependence of particle production in quark-gluon plasma. Central to mid-central, as well as in vs out-of-plane, per neutral pion trigger integrated away-side hadron yield comparisons are made. Results suggest a significant path length dependent partonic energy loss in the medium. A tagging method is also introduced to measure the direct photon yield for various collision criteria. Direct photon …


Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich Jun 2020

Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich

Dissertations, Theses, and Capstone Projects

In this dissertation, I will argue that we can study functional fluctuations in unintegrated gluon distributions, in the MV model as well as JIMWLK, using reweighting techniques, which will allow me to calculate QCD observables with "biased ensembles". This technique will enable me to study rare functional configurations of the gluon distributions, that might have been selected for in, for example, the centrality criteria used by the ATLAS and ALICE collaborations. After a review of these techniques, as well as a review of QCD physics at high energy in general, I will use biased ensembles to compute observables in two …


Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi Aug 2019

Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi

Publications and Research

The statistical hadronization model successfully describes the yields of hadrons and light nuclei from central heavy-ion collisions over a wide range of energies. It is a simple and efficient phenomenological framework in which the relative yields for very high energy collisions are essentially determined by a single model parameter—the chemical freeze-out temperature. Recent measurements of yields of hadrons and light nuclei covering over nine orders of magnitudes from the ALICE collaboration at the Large Hadron Collider were described by the model with remarkable accuracy with a chemical freeze-out temperature of 156.5 ± 1.5 MeV. A key physical question is whether …


Computational Techniques For Scattering Amplitudes, Juliano A. Everett Dec 2018

Computational Techniques For Scattering Amplitudes, Juliano A. Everett

Publications and Research

Scattering amplitudes in quantum field theory can be described as the probability of a scattering process to happen within a high energy particle interaction, as well as a bridge between experimental measurements and the prediction of the theory.

In this research project, we explore the Standard Model of Particle Theory, it’s representation in terms of Feynman diagrams and the algebraic formulas associated with each combination.

Using the FeynArts program as a tool for generating Feynman diagrams, we evaluate the expressions of a set of physical processes, and explain why these techniques become necessary to achieve this goal.


Suppression Of High Transverse Momentum Charged Hadrons In Au+Au Collisions At 200 Gev Nucleon-Nucleon Center Of Mass Energy, Jason B. Bryslawskyj Jun 2016

Suppression Of High Transverse Momentum Charged Hadrons In Au+Au Collisions At 200 Gev Nucleon-Nucleon Center Of Mass Energy, Jason B. Bryslawskyj

Dissertations, Theses, and Capstone Projects

The dynamical properties of quark gluon plasma are studied in heavy ion collisions. Gold ions are accelerated with the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and collided at energies up to 200 GeV per nucleon. Collision products and their properties are detected and measured with the PHENIX detector. At these energies the colliding ions may form a thermalized distribution of quarks and gluons called the Quark-Gluon Plasma. The suppression of single hadrons still provides one of the strongest constraints on energy loss mechanisms in the Quark-Gluon Plasma. Presently, neutral pions provide the best measurement at RHIC of …


Moments Method For Shell-Model Level Density, V. Zelevinsky, M. Horoi, Roman A. Sen′Kov Jan 2016

Moments Method For Shell-Model Level Density, V. Zelevinsky, M. Horoi, Roman A. Sen′Kov

Publications and Research

The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics.


Theories In Spin Dynamics Of Solid-State Nuclear Magnetic Resonance Spectroscopy, Eugene S. Mananga, Jalil Moghaddasi, Ajaz Sana, Mostafa Sadoqi Jan 2015

Theories In Spin Dynamics Of Solid-State Nuclear Magnetic Resonance Spectroscopy, Eugene S. Mananga, Jalil Moghaddasi, Ajaz Sana, Mostafa Sadoqi

Publications and Research

This short review article presents theories used in solid-state nuclear magnetic resonance spectroscopy. Main theories used in NMR include the average Hamiltonian theory, the Floquet theory and the developing theories are the Fer expansion or the Floquet-Magnus expansion. These approaches provide solutions to the time-dependent Schrodinger equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance in particular. Methods of these expansion schemes used as numerical integrators for solving the time dependent Schrodinger equation are presented. The action of their propagator operators is also presented. We highlight potential future theoretical and numerical directions such …


Consequence Management: Evaluating And Developing International Responses To Nuclear And Radiological Disasters, Timothy Taylor Jan 2015

Consequence Management: Evaluating And Developing International Responses To Nuclear And Radiological Disasters, Timothy Taylor

Dissertations and Theses

No abstract provided.


Nuclear Structure Aspects Of Neutrinoless Double Beta Decay, B. Alex Brown, Mihai Horoi, Roman A. Sen′Kov Dec 2014

Nuclear Structure Aspects Of Neutrinoless Double Beta Decay, B. Alex Brown, Mihai Horoi, Roman A. Sen′Kov

Publications and Research

We decompose the neutrinoless double-beta decay matrix elements into sums of products over the intermediate nucleus with two less nucleons. We find that the sum is dominated by the J^pi=0^+ ground state of this intermediate nucleus for both the light and heavy neutrino decay processes. This provides a new theoretical tool for comparing and improving nuclear structure models. It also provides the connection to two-nucleon transfer experiments.


Initial Conditions In High-Energy Collisions, Elena Petreska Jun 2014

Initial Conditions In High-Energy Collisions, Elena Petreska

Dissertations, Theses, and Capstone Projects

This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result …


Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero Jun 2014

Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero

Dissertations, Theses, and Capstone Projects

Yang Mills theory in 2+1 dimensions can be expressed as an array of coupled (1+1)-dimensional principal chiral sigma models. The SU(N) principal chiral sigma model in 1+1 dimensions is integrable, asymptotically free and has massive excitations. We calculate all the form factors and two- point correlation functions of the Noether current and energy-momentum tensor, in

't Hooft's large-N limit (some form factors can be found even at finite N). We use these new form factors to calculate physical quantities in (2+1)-dimensional Yang-Mills theory, generalizing previous SU(2) by P. Orland to SU(N). The anisotropic gauge theory is related to standard isotropic …


Boosted Top Production: Factorization And Resummation For Single-Particle Inclusive Distributions, Andrea Ferroglia, Simone Marzani, Ben D. Pecjak, Li Lin Yang Jan 2014

Boosted Top Production: Factorization And Resummation For Single-Particle Inclusive Distributions, Andrea Ferroglia, Simone Marzani, Ben D. Pecjak, Li Lin Yang

Publications and Research

We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quarkpTis much larger than its mass. In particular, we derive a novel factorization formula validin the small-mass and soft limits of the differential partonic cross section. This providesa framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. The result involves five distinct one-scale functions, three of which arise through the subfactorization of soft real radiation in the small-mass limit. …


…Y La Junta De Energía Nuclear, Habló, Aldemaro Romero Jr. Jan 1974

…Y La Junta De Energía Nuclear, Habló, Aldemaro Romero Jr.

Publications and Research

No abstract provided.