Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Instrumentation and measurement

Articles 1 - 2 of 2

Full-Text Articles in Physics

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Feb 2014

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Thomas E. Wilson

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Dec 2007

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Physics Faculty Research

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …