Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Biosensor

2017

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


Beyond Graphene: Monolayer Transition Metal Dichalcogenides, A New Platform For Science, Carl Hugo Naylor Jan 2017

Beyond Graphene: Monolayer Transition Metal Dichalcogenides, A New Platform For Science, Carl Hugo Naylor

Publicly Accessible Penn Dissertations

Following the isolation of graphene in 2004, scientists quickly showed that it possesses remarkable properties. However, as the scientific understanding of graphene matured, it became clear that it also has limitations: for example, graphene does not have a bandgap, making it poorly suited for use in digital logic. This motivated explorations of monolayer materials “beyond graphene”, which could embody functionalities that graphene lacks. Transition metal dichalcogenides (TMDs) are leading candidates in this field. TMDs possess a wide variety of properties accessible through the choice of chalcogen atom, metal atom and atomic configuration (1H, 1T, and 1T’). Similar to graphene, monolayer ...