Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Series

Condensed matter

Articles 1 - 3 of 3

Full-Text Articles in Physics

Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann Mar 2011

Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann

Physics Faculty Research

We report the first experimental evidence for the resonant excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by far-infrared laser radiation. After a grating-coupled delta-doped silicon doping superlattice is illuminated with ~1 kW/mm2 nanosecond-pulsed 246 GHz laser radiation, a delayed nanosecond pulse is detected by a superconducting bolometer at a time corresponding to the appropriate time-of-flight for ballistic longitudinal acoustic phonons across the (100) silicon substrate. The absorbed phonon power density in the microbolometer is observed to be ~10 μW/mm2, in agreement with theory. The phonon pulse duration also matches the laser pulse duration. The …


Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck Mar 2008

Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck

Physics Faculty Publications and Presentations

Two novel (and proprietary) strategies for the structural identification of a nanocrystal from either a single high-resolution (HR) transmission electron microscopy (TEM) image or a single precession electron diffraction pattern are proposed and their advantages discussed in comparison to structural fingerprinting from powder X-ray diffraction patterns. Simulations for cubic magnetite and maghemite nanocrystals are used as examples.


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic tilt …