Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Selected Works

Gold

Articles 1 - 6 of 6

Full-Text Articles in Physics

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar

Srinivas Sridhar

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This ...


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar

Latika Menon

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This ...


Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan Jul 2010

Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan

U. Guler

The resonance behavior of localized surface plasmons in silver and gold nanoparticles was studied in the visible and near-infrared regions of the electromagnetic spectrum. Arrays of nano-sized gold (Au) and silver (Ag) particles with different properties were produced with electron-beam lithography technique over glass substrates. The effect of the particle size, shape variations, period, thickness, metal type, substrate type and sulfidation were studied via transmission and reflectance measurements. The results are compared with the theoretical calculations based on the DDA simulations performed by software developed in this study. We propose a new intensity modulation technique based on localized surface plasmons ...