Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Selected Works

U. Guler

Refractory plasmonics

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva Apr 2015

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva

U. Guler

Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a …


Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev Dec 2014

Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev

U. Guler

Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …