Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Characterizing The Energetic Landscape In Solution Processable Solar Cells Via Frequency-Dependent Impedance Measurements, Eric S. Wong Jan 2018

Characterizing The Energetic Landscape In Solution Processable Solar Cells Via Frequency-Dependent Impedance Measurements, Eric S. Wong

Publicly Accessible Penn Dissertations

This thesis presents measurements and analyses aimed at describing charge transport dynamics in quantum dot (QD) photovoltaics (PVs). Due to their solution processability and unique size-dependent optoelectronic properties, ensembles of electronically coupled QDs (QD solids) provide an exciting platform for next generation PV devices. However, the structural disorder associated with the formation of conductive QD solids gives rise to a complicated density of states (DOS) emerging from the distribution of mesoscale charge dynamics occurring in these materials.

I present phenomological models to describe the DOS in the disordered energetic and spatial landscape of QD solids that relies on a suite ...


Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


Beyond Graphene: Monolayer Transition Metal Dichalcogenides, A New Platform For Science, Carl Hugo Naylor Jan 2017

Beyond Graphene: Monolayer Transition Metal Dichalcogenides, A New Platform For Science, Carl Hugo Naylor

Publicly Accessible Penn Dissertations

Following the isolation of graphene in 2004, scientists quickly showed that it possesses remarkable properties. However, as the scientific understanding of graphene matured, it became clear that it also has limitations: for example, graphene does not have a bandgap, making it poorly suited for use in digital logic. This motivated explorations of monolayer materials “beyond graphene”, which could embody functionalities that graphene lacks. Transition metal dichalcogenides (TMDs) are leading candidates in this field. TMDs possess a wide variety of properties accessible through the choice of chalcogen atom, metal atom and atomic configuration (1H, 1T, and 1T’). Similar to graphene, monolayer ...


Directed Self-Assembly Of Block Copolymer, No1, Hiromichi Yamamoto Aug 2016

Directed Self-Assembly Of Block Copolymer, No1, Hiromichi Yamamoto

Protocols and Reports

The PS-rich and neutral PS-b-PMMA block copolymer (BCP) films were spin coated on the neutral random copolymer hydroxyl-terminated PS-r-PMMA layers grafted on the native oxide and 50 nm thick PECVD amorphous silicon oxide layers. Relationship between the grafting density of BCP and surface density of hydroxyl moiety on silicon oxide is discussed. Furthermore, optimization of annealing BCP films is reported, and wetted and de-wetted BCP films are shown in optical microscope images. In addition, finger print and nanopore structures of BCP films are also indicated in SEM images.


Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert Jan 2015

Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert

Publicly Accessible Penn Dissertations

The need to detect low concentrations of chemical or biological targets is ubiquitous in environmental monitoring and biomedical applications. The goal of this work was to address challenges in this arena by combining nanomaterials grown via scalable techniques with chemical receptors optimized for the detection problem at hand. Advances were made in the CVD growth of graphene, carbon nanotubes and molybdenum disulfide. Field effect transistors using these materials as the channel were fabricated using methods designed to avoid contamination of the nanomaterial surfaces. These devices were used to read out electronic signatures of binding events of molecular targets in both ...


Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster Jan 2015

Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster

Publicly Accessible Penn Dissertations

Over the last five years, solid state nanopore technology advanced to rival biological pores as a platform for next generation DNA sequencing. Fabrication improvements led to a reduction in nanopore diameter and membrane thickness, offering high precision sensing. Custom electronics were developed concomitant with low capacitance membranes for low-noise, high-bandwidth measurements. These advances improved our ability to detect small differences between translocating molecules and to measure short molecules translocating at high speeds.

This work focuses specifically on the challenge of maximizing the signal magnitude generated by the solid state nanopore. One way that this can be achieved is by thinning ...


Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk Jan 2015

Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk

Publicly Accessible Penn Dissertations

In this dissertation, we discuss optical and electronic interactions in three nanometer scale semiconductor systems in a broadly defined sense. These studies are performed using time-integrated and time-resolved optical spectroscopies and temperature- and field-dependent electrical transport measurements. We first discuss the construction and optimization of an optical apparatus for performing broadband, time-integrated and sub-picosecond fluorescence and absorption measurements. Using this apparatus, we then characterize the impact on the optically-excited carrier relaxation dynamics of cadmium selenide quantum dots due to a surface treatment previously shown to increase interparticle coupling, namely the solution exchange of native, aliphatic ligands for thiocyanate followed by ...


Local Optoelectronic Properties Of Zinc-Porphyrin/Gold Molecular Interfaces, Xi Chen Jan 2014

Local Optoelectronic Properties Of Zinc-Porphyrin/Gold Molecular Interfaces, Xi Chen

Publicly Accessible Penn Dissertations

This research consists in designing a series of experiments to determine the molecular orbital energy levels of zinc-porphyrin molecule when vertically attached to Au(111) substrate. To study the zinc-porphyrine molecular orbitals we use visible light of different wavelengths. Thiolated zinc-porphyrin oligomer molecules link to Au(111) surface, embedded within an 1-octanethiol self-assembled monolayer. Current-Voltage characterization technique allow us to determine the electronic orbital structures of different zinc-porphyrin oligomer single molecules via scanning tunneling microscope. Coupling lasers of different wavelengths and the tunneling junction, illumination effect on the molecular orbital energy levels of zinc-porphyrin molecules is investigated. The results indicate ...


The Optical Properties Of Spiky Gold Nanoshells, Simon Hastings Jan 2014

The Optical Properties Of Spiky Gold Nanoshells, Simon Hastings

Publicly Accessible Penn Dissertations

Plasmonic nanoparticles are a powerful and versatile tool for molecular sensing, drug delivery, and cancer treatment. When exposed to incident light, these nanoparticles have greatly increased far-field scattering and near-field enhancement. Spiky gold nanoshells are a recently developed class of nanoparticles composed of sharp gold spikes decorating a polystyrene core. Spiky nanoshells are synthesized using the templated surfactant-assisted seed growth method, which enables extensive control of the nanoparticle morphology. Here, it is shown that these particles have a tailorable far-field resonance, extremely uniform single-particle surface enhanced Raman scattering, and modal interference in dark-field microscopy measurements. Finite-difference time-domain simulations are performed ...


Engineering Tunable Plasmonic Nanostructures To Enhance Upconversion Luminescence, Marjan Saboktakin Jan 2013

Engineering Tunable Plasmonic Nanostructures To Enhance Upconversion Luminescence, Marjan Saboktakin

Publicly Accessible Penn Dissertations

Plasmonic nanostructures, which can confine and manipulate light below the diffraction limit, are becoming increasingly important in many areas of optical physics and devices. One of the areas that can greatly benefit from surface-plasmon mediated confinement of optical fields is the enhancement of emission in low quantum yield materials. The resonant wavelength for plasmonic structures used for emission enhancement is either the excitation or emission wavelengths of the luminescent material. Therefore, a key component in designing plasmonic structures used in luminescent enhancement applications is the ability to engineer and tune plasmonic building blocks to create structures resonant at the desired ...


Semiconductor Nanowires: Optical Properties And All-Optical Switching, Brian Edward Piccione Jan 2012

Semiconductor Nanowires: Optical Properties And All-Optical Switching, Brian Edward Piccione

Publicly Accessible Penn Dissertations

The optical properties of semiconductor nanowires are both important from a fundamental materials physics standpoint and necessary to understand in engineering applications: nanowire photovoltaic devices, sensors, and lasers, among others, could all benefit. Unfortunately, these optical properties are not easy to ascertain. Transmission times are short, in-coupling of white probe light is difficult, and the angle-resolved measurements typically used to determine material dispersion relations in bulk materials are hindered by diffraction effects at subwavelength nanowire end facets.

Here, we present a series of experimental techniques and theoretical models developed to study of the optical properties of active nanowire waveguides. Beginning ...


The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan Dec 2011

The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan

Publicly Accessible Penn Dissertations

There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has ...


Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen Aug 2011

Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen

Publicly Accessible Penn Dissertations

Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators ...


Field Effect And Magnetically Induced Capacitive Tuning In Hole Doped La1-Xsrxmno3, Zsolt Marton Dec 2010

Field Effect And Magnetically Induced Capacitive Tuning In Hole Doped La1-Xsrxmno3, Zsolt Marton

Publicly Accessible Penn Dissertations

Electrostatic modulation of interface conduction between semiconductors and insulating oxides is the foundation of semiconductor technology. This field effect concept can be applied on complex oxides, such as high temperature superconductors and colossal magnetoresistive manganites, in order to create new electronic and magnetic phases. Competition and coexistence of multiple nanoscale phases make them exciting to study around phase transitions. This study on hole doped La1-xSrxMnO3 systems has a two-fold purpose.

One is the demonstration of the field effect on La1-xSrxMnO3 (x = 0.125, 0.2, 0.3, 0.5) thin films. It is an important step towards electrostatic control of ...