Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai Jan 2015

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai

Dissertations, Master's Theses and Master's Reports - Open

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) …


Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana Jan 2015

Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana

Dissertations, Master's Theses and Master's Reports - Open

Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder …


Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng Jan 2015

Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng

Dissertations, Master's Theses and Master's Reports - Open

Structures, properties and functionalities of magnetic domain walls in thin film, nanowires and atomic chains are studied by micromagnetic simulations and ab initio calculations in this dissertation. For magnetic domain walls in thin films, we computationally investigated the dynamics of one-dimensional domain wall line in ultrathin ferromagnetic film, and the exponent α = 1.24 ± 0.05 is obtained in the creep regime near depinning force, indicating the washboard potential model is supported by our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall line with commonly existed substructures driven by magnetic field are also studied. Our simulation results …


Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar Jan 2013

Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar

Dissertations, Master's Theses and Master's Reports - Open

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed.

Simulations using …