Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

A New Model For Predicting The Drag And Lift Forces Of Turbulent Newtonian Flow On Arbitrarily Shaped Shells On The Seafloor, Carley R. Walker, James V. Lambers, Julian Simeonov May 2022

A New Model For Predicting The Drag And Lift Forces Of Turbulent Newtonian Flow On Arbitrarily Shaped Shells On The Seafloor, Carley R. Walker, James V. Lambers, Julian Simeonov

Dissertations

Currently, all forecasts of currents, waves, and seafloor evolution are limited by a lack of fundamental knowledge and the parameterization of small-scale processes at the seafloor-ocean interface. Commonly used Euler-Lagrange models for sediment transport require parameterizations of the drag and lift forces acting on the particles. However, current parameterizations for these forces only work for spherical particles. In this dissertation we propose a new method for predicting the drag and lift forces on arbitrarily shaped objects at arbitrary orientations with respect to the direction of flow that will ultimately provide models for predicting the sediment sorting processes that lead to …


Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar Dec 2018

Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar

Dissertations

Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb’s phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of …


Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami Aug 2017

Solution Of Pdes For First-Order Photobleaching Kinetics Using Krylov Subspace Spectral Methods, Somayyeh Sheikholeslami

Dissertations

We solve the first order reaction-diffusion equations which describe binding-diffusion kinetics using a photobleaching scanning profile of a confocal laser scanning microscope approximated by a Gaussian laser profile. We show how to solve these equations with prebleach steady-state initial conditions using a time-domain method known as a Krylov Subspace Spectral (KSS) method. KSS methods are explicit methods for solving time- dependent variable-coefficient partial differential equations (PDEs). KSS methods are advantageous compared to other methods because of their stability and their superior scalability. These advantages are obtained by applying Gaussian quadrature rules in the spectral domain developed by Golub and Meurant. …


Lorentz Invariant Spacelike Surfaces Of Constant Mean Curvature In Anti-De Sitter 3-Space, Jamie Patrick Lambert Aug 2015

Lorentz Invariant Spacelike Surfaces Of Constant Mean Curvature In Anti-De Sitter 3-Space, Jamie Patrick Lambert

Master's Theses

In this thesis, I studied Lorentz invariant spacelike surfaces with constant mean curvature H = c in the anti-de Sitter 3-space H31(−c2) of constant curvature −c2. In particular, I construct Lorentz invariant spacelike surfaces of constant mean curvature c and maximal Lorentz invariant spacelike surfaces in H31(−c2). I also studied the limit behavior of those constant mean curvature c surfaces in H31(−c2). It turns out that they approach a maximal catenoid in Minkowski 3-space E31 as c → …


Relativistic Studies Of The Charmonium And Bottomonium Systems Using The Sucher Equation, Charles Martin Werneth Aug 2010

Relativistic Studies Of The Charmonium And Bottomonium Systems Using The Sucher Equation, Charles Martin Werneth

Dissertations

In this dissertation, bound states of quarks and anti-quarks (mesons) are studied with a relativistic equation known as the Sucher equation. Prior to the work in this dissertation, the Sucher equation had never been used for meson mass spectra. Furthermore, a full angular momentum analysis of the Sucher equation has never been studied. The Sucher equation is a relativistic equation with positive energy projectors imposed on the interaction. Since spin is inherent to the equation, the Sucher equation is equivalent to a relativistic Schrödinger equation with a spin-dependent effective potential. Through a complete general angular momentum analysis of the equation, …


Studies Of Meson Mass Spectra In The Context Of Quark-Antiquark Bound States, Mallika Dhar Aug 2010

Studies Of Meson Mass Spectra In The Context Of Quark-Antiquark Bound States, Mallika Dhar

Dissertations

This dissertation deals with the computation of meson mass spectra in the context of quarkantiquark (q ¯ q) bound-state. Traditionally the q ¯ q bound-state problem is treated by solving the non-relativistic Schrödinger equation in position representation with a linear confining potential and a Coulomb-like attractive potential. For high energy, relativistic kinematics is necessary. It is well known that relativistic kinematics cannot be treated properly in position representation, but it can easily be handled in momentum representation. On the other hand, the linear potential and Coulomb-like potential have singularities in momentum-space and complicated subtraction procedure is necessary to treat the …