Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii Jul 2017

Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii

Center for Advanced Materials Faculty Publications

The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the …


Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao Jun 2016

Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao

Center for Advanced Materials Faculty Publications

The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong …


Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan Jun 2016

Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan

Center for Advanced Materials Faculty Publications

We report high-resolution angle-resolved photoemission spectroscopy measurements on the honeycomb iridate Na2IrO3. Our measurements reveal the existence of a metallic surface band feature crossing the Fermi level with nearly linear dispersion and an estimated surface carrier density of 3.2 x 1013 cm-2, which has not been theoretically predicted or experimentally observed, and provides the first evidence for metallic behavior on the boundary of this material, whereas the bulk bands exhibit a robust insulating gap. We further show the lack of theoretically predicted Dirac cones at the M¯ points of the surface Brillouin …


Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill Jun 2016

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill

Center for Advanced Materials Faculty Publications

The magnetic excitations in electron-doped (Sr1−xLax)2IrO4 with x = 0.03 were measured using resonant inelastic x-ray scattering at the Ir L3 edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the undoped compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the antinodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron-doped (Sr1−xLax …


Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang May 2016

Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang

Center for Advanced Materials Faculty Publications

High quality Sr4Ru3O10 nanoflakes are obtained by the scotch tape-based micro-mechanical exfoliation method. The metamagnetic transition temperature Tmflake is found to decrease in line with the decrease of thickness, while the ferromagnetic (FM) phase, the ordinary, and anomalous Hall effects (OHE and AHE) are independent on the thickness of the flake. Analysis of the data demonstrates that the AHE reflects the FM nature of Sr4Ru3O10, and the decrease of thickness favors the Ru moments aligned in the ab-plane, which induces a decrease of the metamagnetic transition …


X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh Mar 2016

X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh

Center for Advanced Materials Faculty Publications

We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in …


Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi Feb 2015

Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi

Center for Advanced Materials Faculty Publications

Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr2IrO4 are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr2IrO4 were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an …


A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh Aug 2014

A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh

Center for Advanced Materials Faculty Publications

Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the μm length scale, a need …


Tunneling Into The Mott Insulator Sr2Iro4, John A. Nichols, Noah Bray-Ali, Armin Ansary, Gang Cao, Kwok-Wai Ng Feb 2014

Tunneling Into The Mott Insulator Sr2Iro4, John A. Nichols, Noah Bray-Ali, Armin Ansary, Gang Cao, Kwok-Wai Ng

Center for Advanced Materials Faculty Publications

We studied the single-layered iridate Sr2IrO4 with a scanning tunneling microscope. The finite low temperature conductance enables the electronic structure of this antiferromagnetic Mott insulator to be measured by tunneling spectroscopy. We imaged the topography of freshly cleaved surfaces and measured differential tunneling conductance at cryogenic temperatures. We found the Mott gap in the tunneling density of states to be 2Δ=615 meV. Within the Mott gap, additional shoulders are observed which are interpreted as inelastic loss features due to magnons.


Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao Apr 2013

Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao

Center for Advanced Materials Faculty Publications

We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambiguously determines the magnetic structure of the system and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) μB/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) μB/site for the a axis and the b axis, respectively. It is intriguing that forbidden nuclear reflections …