Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physics

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson Jan 2018

Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson

Theses and Dissertations--Physics and Astronomy

Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and …


Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii Jul 2017

Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii

Center for Advanced Materials Faculty Publications

The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the …


Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng Mar 2017

Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Publications

The importance of coating's chemical stability in lithium-ion batteries has been demonstrated by this study. It is well known that the mechanical properties determine the cycle life, and chemical stability or chemical degradation rate determines the calendar life. In this study, we used HfO2 coatings prepared by atomic layer deposition as an example to show the chemical stability of the coatings for lithium ion battery electrodes.


Structure And Physical Properties Of Srniru5O11 Single Crystals: An R-Type Ferrite Based On Ordered Kagome Nets, L. Shlyk, Lance E. De Long, R. Niewa Jan 2017

Structure And Physical Properties Of Srniru5O11 Single Crystals: An R-Type Ferrite Based On Ordered Kagome Nets, L. Shlyk, Lance E. De Long, R. Niewa

Physics and Astronomy Faculty Publications

Single crystals of the R-type ferrite SrNiRu5O11 were grown from a chloride flux. The hexagonal crystal structure contains ruthenium located on distorted kagome nets. The low-temperature dc magnetic susceptibilities (χ and χ, perpendicular and parallel to the c axis, respectively) diverge as T−0.3, and do not exhibit any indication of long-range magnetic order down to 4.5 K. The electrical resistivity varies as T1.6 below 40 K, which is typical of non-Fermi liquids, and may originate from a competition between residual magnetic interactions among Ni2+ (S = 1) spins …


Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo Oct 2016

Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo

Physics and Astronomy Faculty Publications

Metal electrodes are a universal element of all electronic devices. Conducting SrRuO3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (TC), which can lead to higher Joule heating and energy loss in the devices. Here, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thin …


Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao Jun 2016

Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao

Center for Advanced Materials Faculty Publications

The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong …


Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan Jun 2016

Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan

Center for Advanced Materials Faculty Publications

We report high-resolution angle-resolved photoemission spectroscopy measurements on the honeycomb iridate Na2IrO3. Our measurements reveal the existence of a metallic surface band feature crossing the Fermi level with nearly linear dispersion and an estimated surface carrier density of 3.2 x 1013 cm-2, which has not been theoretically predicted or experimentally observed, and provides the first evidence for metallic behavior on the boundary of this material, whereas the bulk bands exhibit a robust insulating gap. We further show the lack of theoretically predicted Dirac cones at the M¯ points of the surface Brillouin …


Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill Jun 2016

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill

Center for Advanced Materials Faculty Publications

The magnetic excitations in electron-doped (Sr1−xLax)2IrO4 with x = 0.03 were measured using resonant inelastic x-ray scattering at the Ir L3 edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the undoped compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the antinodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron-doped (Sr1−xLax …


Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang May 2016

Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang

Center for Advanced Materials Faculty Publications

High quality Sr4Ru3O10 nanoflakes are obtained by the scotch tape-based micro-mechanical exfoliation method. The metamagnetic transition temperature Tmflake is found to decrease in line with the decrease of thickness, while the ferromagnetic (FM) phase, the ordinary, and anomalous Hall effects (OHE and AHE) are independent on the thickness of the flake. Analysis of the data demonstrates that the AHE reflects the FM nature of Sr4Ru3O10, and the decrease of thickness favors the Ru moments aligned in the ab-plane, which induces a decrease of the metamagnetic transition …


X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh Mar 2016

X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh

Center for Advanced Materials Faculty Publications

We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …


Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi Feb 2015

Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi

Center for Advanced Materials Faculty Publications

Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr2IrO4 are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr2IrO4 were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an …


A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh Aug 2014

A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh

Center for Advanced Materials Faculty Publications

Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the μm length scale, a need …


Transparent Conducting Oxides: A Δ-Doped Superlattice Approach, Valentino R. Cooper, Sung S. Ambrose Seo, Suyoun Lee, Jun Sung Kim, Woo Seok Choi, Satoshi Okamoto, Ho Nyung Lee Jul 2014

Transparent Conducting Oxides: A Δ-Doped Superlattice Approach, Valentino R. Cooper, Sung S. Ambrose Seo, Suyoun Lee, Jun Sung Kim, Woo Seok Choi, Satoshi Okamoto, Ho Nyung Lee

Physics and Astronomy Faculty Publications

Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d …


Tunneling Into The Mott Insulator Sr2Iro4, John A. Nichols, Noah Bray-Ali, Armin Ansary, Gang Cao, Kwok-Wai Ng Feb 2014

Tunneling Into The Mott Insulator Sr2Iro4, John A. Nichols, Noah Bray-Ali, Armin Ansary, Gang Cao, Kwok-Wai Ng

Center for Advanced Materials Faculty Publications

We studied the single-layered iridate Sr2IrO4 with a scanning tunneling microscope. The finite low temperature conductance enables the electronic structure of this antiferromagnetic Mott insulator to be measured by tunneling spectroscopy. We imaged the topography of freshly cleaved surfaces and measured differential tunneling conductance at cryogenic temperatures. We found the Mott gap in the tunneling density of states to be 2Δ=615 meV. Within the Mott gap, additional shoulders are observed which are interpreted as inelastic loss features due to magnons.


Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao Apr 2013

Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao

Center for Advanced Materials Faculty Publications

We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambiguously determines the magnetic structure of the system and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) μB/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) μB/site for the a axis and the b axis, respectively. It is intriguing that forbidden nuclear reflections …