Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Bactericidal Effects Of Cold Plasma Technology On Geobacillus Stearothermophilus And Bacillus Cereus Microorganisms, Angela D. Morris, Gayle B. Mccombs, Susan L. Tolle, Mounir Laroussi, Wayne L. Hynes Oct 2007

Bactericidal Effects Of Cold Plasma Technology On Geobacillus Stearothermophilus And Bacillus Cereus Microorganisms, Angela D. Morris, Gayle B. Mccombs, Susan L. Tolle, Mounir Laroussi, Wayne L. Hynes

Dental Hygiene Faculty Publications

Cold plasma is a state of matter that contains a large number of particles that are electrically charged. Plasmas generate chemically reactive species and ultraviolet radiation making them useful in decontamination applications (Kong & Laroussi, 2003). Research regarding the inactivation of gram-positive bacteria by cold plasma has been studied by Laroussi et al (2003); however, there is limited research regarding the germicidal effectiveness of cold plasma on Geobacillus stearothermophilus and Bacillus cereus microorganisms. The purpose of this study was to determine if cold plasma technology inactivates Geobacillus stearothermophilus and Bacillus cereus vegetative cells and spores. This study consisted of 981 …


A Theoretical Model For Blood Flow In Small Vessels, V. P. Srivastava Jun 2007

A Theoretical Model For Blood Flow In Small Vessels, V. P. Srivastava

Applications and Applied Mathematics: An International Journal (AAM)

A two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes. The analytical results obtained in the proposed model for effective viscosity, velocity profiles and flow rate have been evaluated numerically for various values of the parameters available from published works. Quantitative comparison has shown that present model suitability represents blood flow at hematocrit (less than or equal to 40%) and in vessels up to 70 micrometers …


Depleted Carbon Monoxide In Fragment C Of The Jupiter-Family Comet 73p/Schwassmann-Wachmann 3, M. Disanti, W. Anderson, G. Villanueva, B. Bonev, K. Magee-Sauer, E. Gibb, M. Mumma May 2007

Depleted Carbon Monoxide In Fragment C Of The Jupiter-Family Comet 73p/Schwassmann-Wachmann 3, M. Disanti, W. Anderson, G. Villanueva, B. Bonev, K. Magee-Sauer, E. Gibb, M. Mumma

Physics Faculty Works

Carbon monoxide emission was targeted in fragment C of the recently split Jupiter-family comet 73P/Schwassmann-Wachmann 3 during its 2006 apparition, using the Cryogenic Echelle Spectrograph (CSHELL) at the NASA IRTF on Mauna Kea, Hawaii. Simultaneous sounding with H2O near 4.65 μm revealed highly depleted CO, consistent with a mixing ratio of 0.5% ± 0.13%. Along with depleted CH3OH but nearly normal HCN, this may indicate that this comet formed in the inner giant planets' region or, alternatively, that it formed relatively late, after significant clearing of the protosolar nebula.


Depleted Carbon Monoxide In Fragment C Of The Jupiter-Family Comet 73p/Schwassmann-Wachmann 3, M. A. Disanti, W. M. Anderson, G. L. Villanueva, B. P. Bonev, K. Magee-Sauer, E. L. Gibb, M. J. Mumma May 2007

Depleted Carbon Monoxide In Fragment C Of The Jupiter-Family Comet 73p/Schwassmann-Wachmann 3, M. A. Disanti, W. M. Anderson, G. L. Villanueva, B. P. Bonev, K. Magee-Sauer, E. L. Gibb, M. J. Mumma

Erika Gibb

Carbon monoxide emission was targeted in fragment C of the recently split Jupiter-family comet 73P/Schwassmann-Wachmann 3 during its 2006 apparition, using the Cryogenic Echelle Spectrograph (CSHELL) at the NASA IRTF on Mauna Kea, Hawaii. Simultaneous sounding with H2O near 4.65 μm revealed highly depleted CO, consistent with a mixing ratio of 0.5% ± 0.13%. Along with depleted CH3OH but nearly normal HCN, this may indicate that this comet formed in the inner giant planets' region or, alternatively, that it formed relatively late, after significant clearing of the protosolar nebula.


Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Vovk, Donald J. Scherer Ii, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg, Zachary Davis, Jin-Seung Jung May 2007

Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Vovk, Donald J. Scherer Ii, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg, Zachary Davis, Jin-Seung Jung

Chemistry and Biochemistry Faculty Publications

Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of , a width of , and different lengths ranging from . The stripes are separated by a distance of . Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic field indicates the presence of uniaxial magnetic anisotropy associated with the …


Ua66 2007 Student Awards Ceremony, Wku Ogden College Of Science & Engineering Apr 2007

Ua66 2007 Student Awards Ceremony, Wku Ogden College Of Science & Engineering

WKU Archives Records

Program recognizing Ogden College students with brief list of activities for each student.


Size Dependence Of Static And Dynamic Magnetic Properties In Nanoscale Square Permalloy Antidot Arrays, Minghui Yu, Leszek M. Malkinski, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg Mar 2007

Size Dependence Of Static And Dynamic Magnetic Properties In Nanoscale Square Permalloy Antidot Arrays, Minghui Yu, Leszek M. Malkinski, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg

Chemistry and Biochemistry Faculty Publications

Permalloy antidot arrays with different square hole sizes ( , , and ) have been fabricated by means of electron-beam lithography and lift-off techniques. The smaller square hole size results in enhanced remanence and reduced coercivity in the antidot array. Multiple resonance modes were clearly observed for the magnetic field applied normal to the array plane, and double uniform resonance modes occurred when the field deviated more than 30° from the normal to the plane. Two distinct dipolar field patterns with different orientations and magnitudes split the uniform resonance into double resonance modes. The double resonance modes show uniaxial in-plane …


Strokes Of Existence: The Connection Of All Things, Mari Gorman Jan 2007

Strokes Of Existence: The Connection Of All Things, Mari Gorman

Graduate Student Publications and Research

Acted or real—and all life is real whether one is acting or not—the common denominator and consistent, ubiquitous reality of life and all behavior is that it manifests in the form of relationships on all scales. But what is a relationship? Until now, the answer to this question has not been sufficiently known. As a result of many years of empirical research that began with the aim of discovering what is going on in a gifted actor when s/he is playing a character that can be observed and experienced as a living, intuitive being, and based on the knowledge that …


From Morphology To Neural Information: The Electric Sense Of The Skate, Marcelo Camperi, Timothy C. Tricas, Brandon R. Brown Jan 2007

From Morphology To Neural Information: The Electric Sense Of The Skate, Marcelo Camperi, Timothy C. Tricas, Brandon R. Brown

Physics and Astronomy

Morphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.g., a prey organism). We compute the coincident electric signals that develop across an array of the skate's electrosensors, using electrodynamics married to precise morphological measurements of sensor location, infrastructure, and vector projection. Our results demonstrate that skate morphology enhances electrosensory information. Not only could the skate locate prey using a simple population vector algorithm, but …


Motion-Sensitive 3-D Optical Coherence Microscope Operating At 1300 Nm For The Visualization Of Early Frog Development, Barbara M. Hoeling, Stephanie S. Feldman, Daniel T. Strenge, Aaron Bernard, Emily R. Hogan, Daniel C. Petersen, Scott E. Fraser, Yun Kee, J. Michael Tyszka, Richard C. Haskell Jan 2007

Motion-Sensitive 3-D Optical Coherence Microscope Operating At 1300 Nm For The Visualization Of Early Frog Development, Barbara M. Hoeling, Stephanie S. Feldman, Daniel T. Strenge, Aaron Bernard, Emily R. Hogan, Daniel C. Petersen, Scott E. Fraser, Yun Kee, J. Michael Tyszka, Richard C. Haskell

All HMC Faculty Publications and Research

We present 3-dimensional volume-rendered in vivo images of developing embryos of the African clawed frog Xenopus laevis taken with our new en-face-scanning, focus-tracking OCM system at 1300 nm wavelength. Compared to our older instrument which operates at 850 nm, we measure a decrease in the attenuation coefficient by 33%, leading to a substantial improvement in depth penetration. Both instruments have motion-sensitivity capability. By evaluating the fast Fourier transform of the fringe signal, we can produce simultaneously images displaying the fringe amplitude of the backscattered light and images showing the random Brownian motion of the scatterers. We present time-lapse movies of …


Effects Of Molecular Motion On Deuteron Magic Angle Spinning Nmr Spectra, Yuanyuan Huang Jan 2007

Effects Of Molecular Motion On Deuteron Magic Angle Spinning Nmr Spectra, Yuanyuan Huang

Dissertations, Theses, and Masters Projects

Solid state deuteron NMR experiments, especially magic angle spinning (MAS) and off-magic angle spinning (OMAS), are developed to explore dynamical systems. A theoretical discussion of interactions relevant for spin-1 nuclei is presented. Practical aspects of MAS/OMAS experiments are described an detail. The dominant quadrupolar coupling interaction in deuteron NMR has been simulated and the effects of multiple-frame molecular motions on MAS/OMAS spectra are taken into account in this calculation. Effects of chemical shift anisotropy are also simulated, and shown to be small under conditions of rapid sample spinning.;Two numerical methods, direct integration and an efficient simulation routine based on Floquet …