Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic May 2021

Synthetic Heterosynaptic Plasticity Enhances The Versatility Of Memristive Systems Emulating Bio-Synapse Structure And Function, William T. Mcclintic

Doctoral Dissertations

Memristive systems occur in nature and are hallmarked via pinched hysteresis, the difference in the forward and reverse pathways for a given phenomenon. For example, neurons of the human brain are composed of synapses which apply the properties of memristance for neuronal communication, learning, and memory consolidation. Modern technology has much to gain from the characteristics of memristive systems, including lower power operation, on-chip memory, and bio-inspired computing. What is more, a relationship between memristive systems and synaptic plasticity exists and can be investigated focusing on homosynaptic and heterosynaptic plasticity. Where homosynaptic plasticity applies to interactions between neurons at a …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


Probing Structure, Function And Dynamics In Bacterial Primary And Secondary Transporter-Associated Binding Proteins, Shantanu Shukla Dec 2020

Probing Structure, Function And Dynamics In Bacterial Primary And Secondary Transporter-Associated Binding Proteins, Shantanu Shukla

Doctoral Dissertations

Substrate binding proteins (SBPs) are ubiquitous in all life forms and have evolved to perform diverse physiological functions, such as in membrane transport, gene regulation, neurotransmission, and quorum sensing. It is quite astounding to observe such functional diversity among the SBPs even when they are restricted by their fold space. Therefore, the SBPs are an excellent set of proteins that can reveal how proteins evolution novel function in a structurally conserved/constrained fold. This study attempts to understand the phenomenon of affinity and specificity evolution in SBPs by combining a set of biochemical, biophysical, and structural studies on the SBPs involved …


Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller Dec 2020

Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller

Doctoral Dissertations

Understanding how small-molecules, such as drugs, interact with bacterial membranes can quickly unravel into much more perplexing questions. No two bacterial species are alike, especially when comparing their membrane compositions which can even be altered by incorporating fatty acids from their surrounding environment into their lipid-membrane composition. To further complicate the comparison, discrete alterations in small-molecule structures can result in vastly different membrane-interaction outcomes, giving rise to the need for more "label-free" studies when analyzing drug mechanisms. The work presented in this dissertation highlights the benefits to using nonlinear spectroscopy and microscopy techniques for probing small-molecule interactions in living bacteria. …


Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey May 2016

Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey

Doctoral Dissertations

How nanometer-scale proteins position accurately within micron-scale bacteria has intrigued both biologists and physicists alike. A critical process requiring precise protein localization is cell division. In most bacteria, cell division starts with the self-assembly of the FtsZ proteins into filaments that form a ring-like structure encircling the cell at its middle, the Z-ring. The Z-ring is a scaffold for additional proteins that synthesize the lateral cell wall which separates the two daughter cells. If division planes are misplaced relative to bacterial chromosomes, also called nucleoids, daughter cells with incomplete genetic material can be produced. In Escherichia coli, research carried out …


Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega May 2013

Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega

Doctoral Dissertations

The combination of physics, biology, chemistry, and computer science constitutes the promising field of computational molecular biophysics. This field studies the molecular properties of DNA, protein lipids and biomolecules using computational methods. For this dissertation, I approached four problems involving the chemotaxis pathway, the set of proteins that function as the navigation system of bacteria and lower eukaryotes.

In the first chapter, I used a special-purpose machine for molecular dynamics simulations, Anton, to simulate the signaling domain of the chemoreceptor in different signaling states for a total of 6 microseconds. Among other findings, this study provides enough evidence to propose …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner Dec 2012

Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner

Doctoral Dissertations

Molecular dynamics simulation has become an essential tool for scientific discovery and investigation. The ability to evaluate every atomic coordinate for each time instant sets it apart from other methodologies, which can only access experimental observables as an outcome of the atomic coordinates. Here, the utility of molecular dynamics is illustrated by investigating the structure and dynamics of fundamental models of cellulose fibers. For that, a highly parallel code has been developed to compute static and dynamical scattering functions efficiently on modern supercomputing architectures. Using state of the art supercomputing facilities, molecular dynamics code and parallelization strategies, this work also …


Adaptation And Stochasticity Of Natural Complex Systems, Roy David Dar May 2011

Adaptation And Stochasticity Of Natural Complex Systems, Roy David Dar

Doctoral Dissertations

The methods that fueled the microscale revolution (top-down design/fabrication, combined with application of forces large enough to overpower stochasticity) constitute an approach that will not scale down to nanoscale systems. In contrast, in nanotechnology, we strive to embrace nature’s quite different paradigms to create functional systems, such as self-assembly to create structures, exploiting stochasticity, rather than overwhelming it, in order to create deterministic, yet highly adaptable, behavior. Nature’s approach, through billions of years of evolutionary development, has achieved self-assembling, self-duplicating, self-healing, adaptive systems. Compared to microprocessors, nature’s approach has achieved eight orders of magnitude higher memory density and three orders …