Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Physics

A Causal Inference Approach For Spike Train Interactions, Zach Saccomano Feb 2024

A Causal Inference Approach For Spike Train Interactions, Zach Saccomano

Dissertations, Theses, and Capstone Projects

Since the 1960s, neuroscientists have worked on the problem of estimating synaptic properties, such as connectivity and strength, from simultaneously recorded spike trains. Recent years have seen renewed interest in the problem coinciding with rapid advances in experimental technologies, including an approximate exponential increase in the number of neurons that can be recorded in parallel and perturbation techniques such as optogenetics that can be used to calibrate and validate causal hypotheses about functional connectivity. This thesis presents a mathematical examination of synaptic inference from two perspectives: (1) using in vivo data and biophysical models, we ask in what cases the …


Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown Jun 2023

Characterization Of Boreal-Arctic Vegetation Growth Phases And Active Soil Layer Dynamics In The High-Latitudes Of North America: A Study Combining Multi-Year In Situ And Satellite-Based Observations, Michael G. Brown

Dissertations, Theses, and Capstone Projects

This dissertation examined the seasonal freeze/thaw activity in boreal-Arctic soils and vegetation physiology in Alaska, USA and Alberta, Canada, using in situ environmental measurements and passive microwave satellite observations. The boreal-Arctic high-latitudes have been experiencing ecosystem changes more rapidly in comparison to the rest of Earth due to the presently warming climatic conditions having a magnified effect over Polar Regions. Currently, the boreal-Arctic is a carbon sink; however, recent studies indicate a shift over the next century to become a carbon source. High-latitude vegetation and cold soil dynamics are influenced by climatic shifts and are largely responsible for the regions …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer Jun 2022

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner Jun 2021

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner

Publications and Research

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome …


Third Harmonic Generation: A Method For Visualizing Myelin In The Murine Cerebral Cortex, Michael Redlich Feb 2021

Third Harmonic Generation: A Method For Visualizing Myelin In The Murine Cerebral Cortex, Michael Redlich

Dissertations, Theses, and Capstone Projects

Here we present the use of Third Harmonic Generation (THG) for the label-free imaging of myelinated axons in the murine cerebral cortex. Myelin plays an important role in the processes of learning and disease. However, much of the myelin biology research thus far has focused on white matter tracts where myelin is more visible. Much is still unknown, particularly with regard to myelin in gray matter. First, we engage in THG microscopy using an optical parametric oscillator pumped by a titanium-sapphire laser to demonstrate the utility of the technique for imaging myelin in vivo. Second, we investigate the use of …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus Aug 2020

Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus

Theses and Dissertations

This paper investigates how the snow-albedo feedback mechanism of the arctic is changing in response to rising climate temperatures. Specifically, the interplay of vegetation and snowmelt, and how these two variables can be correlated. This has the potential to refine climate modelling of the spring transition season. Research was conducted at the ecoregion scale in northern Alaska from 2000 to 2020. Each ecoregion is defined by distinct topographic and ecological conditions, allowing for meaningful contrast between the patterns of spring albedo transition across surface conditions and vegetation types. The five most northerly ecoregions of Alaska are chosen as they encompass …


Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau Jul 2020

Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau

Publications and Research

Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efciently refect, absorb or scatter light. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms inspired by natural evolution and performing particular optimizations (maximize refection for a given wavelength, for a broad range of wavelength or maximize the scattering of light), we have retrieved the most stereotypical natural photonic structures. Whether those structures are Bragg mirrors, chirped dielectric mirrors or the gratings on top of …


Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse Jun 2020

Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse

Publications and Research

We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks …


Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai Jun 2020

Proton Pumping Mechanism In Cytochrome C Oxidase, Xiuhong Cai

Dissertations, Theses, and Capstone Projects

Cytochrome c Oxidase (CcO), is the terminal electron acceptor in the membrane bound aerobic respiratory chain. It reduces O2 to water. The energy released by this reaction is stored by pumping protons from the high pH, N-side of the membrane to the low pH, P-side. The generated proton gradient provides the motive force for synthesis of ATP by the ATP synthase.

Building a proton gradient across the membrane requires that proton transport must occur along controllable proton pathways to prevent proton leakage to the N-side. It has been suggested that CcO function requires proton transfer channels in both the …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo Jan 2019

Using Fundamental Properties Of Light To Investigate Photonic Effects In Condensed Matter And Biological Tissues, Laura A. Sordillo

Dissertations and Theses

Light possesses characteristics such as polarization, wavelength and coherence. The interaction of light and matter, whether in a semiconductor or in a biological sample, can reveal important information about the internal properties of a system. My thesis focuses on two areas: photocarriers in gallium arsenide and biomedical optics. Varying the excitation wavelength can be used to study both biological tissue and condensed matter. I altered the excitation wavelengths to be in the longer near-infrared (NIR) optical windows, in the shortwave infrared (SWIR) range, a wavelength region previously thought to be unusable for medical imaging. With this method, I acquired high …


Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz Sep 2018

Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz

Dissertations, Theses, and Capstone Projects

In this thesis I show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into a ligand-gated or counterion-gated conformational molecular switch. To demonstrate this I first modified the designed helical bundle hemoprotein H4 using simple molecular modeling, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. Due to the high surface charge density, ligand binding to this protein is allosterically activated by low concentrations of divalent cations and the polyamine spermine. …


Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu Jul 2018

Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu

Publications and Research

Broadband high reflectance in nature is often the result of randomly, three-dimensionally structured materials. This study explores unique optical properties associated with one-dimensional nanostructures discovered in silk cocoon fibers of the comet moth, Argema mittrei. The fibers are populated with a high density of air voids randomly distributed across the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly scatter light in the solar spectrum. A single silk fiber measuring ~50 μm thick can reflect 66% of incoming solar radiation, and this, together with the fibers' high emissivity of 0.88 in the mid-infrared range, allows …


A Realization Of Modernity: Case Studies In Connectivity And Time, Mari Gorman Sep 2017

A Realization Of Modernity: Case Studies In Connectivity And Time, Mari Gorman

Dissertations, Theses, and Capstone Projects

My stated goal in applying to The Graduate Center was to explore my previous research in diverse fields of study. This research, the result of a formal investigation of acting, was and still is centrally focused on the subject of relationship itself, relationships being what actors create. In pursuit of a greater understanding of the essential nature of relationship in practical terms, a self-organizing complex system that constitutes universal relationship was unexpectedly discovered. As such, this system has been shown to offer solutions to many outstanding problems in diverse areas of study. The Liberal Studies program track, Approaches to Modernity …


Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian Jan 2017

Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian

Publications and Research

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching …


Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park Jan 2017

Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park

Dissertations and Theses

Micro- and nano-motors have attracted numerous attentions from various scientific areas due to their potential applications. Most studies on self-propelled colloidal engines have exploited catalytic decomposition of hydrogen peroxide to drive the motor. Since the hydrogen peroxide is caustic, it is not suitable to use in biological applications, encouraging people to develop “greener” fuels. The aim of this research is to study a new transduction mechanism for self-propulsion not tied to hydrogen peroxide, and which can in particular be used with biological molecules as fuels. In this study, we focus on making particles with enzymatic activity which can effectively decompose …


Biophysical Characterization Of A De Novo Elastin, Kelly Nicole Greenland Sep 2015

Biophysical Characterization Of A De Novo Elastin, Kelly Nicole Greenland

Dissertations, Theses, and Capstone Projects

Natural human elastin is found in tissue such as the lungs, arteries, and skin. This protein is formed at birth with no mechanism present to repair or supplement the initial quantity formed. As a result, the functionality and durability of elastin's elasticity is critically important. To date, the mechanics of this ability to stretch and recoil is not fully understood. This study utilizes de novo protein design to create a small library of simplistic versions of elastin-like proteins, demonstrate the elastin-like proteins, maintain elastin's functionality, and inquire into its structure using solution nuclear magnetic resonance (NMR).

Elastin is formed from …


An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun Sep 2015

An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun

Publications and Research

In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ/μ. However, when vaccination is allowed the final density of recovered individual first increases and …


De Novo Design And Engineering Of Functional Metal And Porphyrin-Binding Protein Domains, Bernard Howard Everson Feb 2015

De Novo Design And Engineering Of Functional Metal And Porphyrin-Binding Protein Domains, Bernard Howard Everson

Dissertations, Theses, and Capstone Projects

In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron …


A Principle Of Economy Predicts The Functional Architecture Of Grid Cells, Xue-Xin Wei, Jason Prentice, Vijay Balasubramanian Jan 2015

A Principle Of Economy Predicts The Functional Architecture Of Grid Cells, Xue-Xin Wei, Jason Prentice, Vijay Balasubramanian

Publications and Research

Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 …


An Experimental Investigation Into The Mechanisms Of Bacterial Evolution, Zhenmao Wan Feb 2014

An Experimental Investigation Into The Mechanisms Of Bacterial Evolution, Zhenmao Wan

Dissertations, Theses, and Capstone Projects

This thesis studies the two fundamental mechanisms of bacterial evolution — horizontal gene transfer and spontaneous mutation, in the bacterium Escherichia coli through novel experimental assays and mathematical simulations. First, I will develop a growth assay utilizing the quantitative polymerase chain reaction (qPCR) to provide real-time enumeration of genetic marker abundance within bacterial populations. Second, I will focus on horizontal gene transfer in E. coli occurring through a process called conjugation. By fitting the qPCR data to a resource limited, logistic growth model, I will obtain estimated values of several key parameters governing the dynamics of DNA transfer through conjugation …


Strokes Of Existence: The Connection Of All Things, Mari Gorman Jan 2007

Strokes Of Existence: The Connection Of All Things, Mari Gorman

Graduate Student Publications and Research

Acted or real—and all life is real whether one is acting or not—the common denominator and consistent, ubiquitous reality of life and all behavior is that it manifests in the form of relationships on all scales. But what is a relationship? Until now, the answer to this question has not been sufficiently known. As a result of many years of empirical research that began with the aim of discovering what is going on in a gifted actor when s/he is playing a character that can be observed and experienced as a living, intuitive being, and based on the knowledge that …