Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1411 - 1440 of 1565

Full-Text Articles in Physics

Effect Of Electric Field Doping On The Anisotropic Magnetoresistance In Doped Manganites, X. Hong, J. -B. Yau, J. D. Hoffman, C. H. Ahn Jan 2006

Effect Of Electric Field Doping On The Anisotropic Magnetoresistance In Doped Manganites, X. Hong, J. -B. Yau, J. D. Hoffman, C. H. Ahn

Xia Hong Publications

We have modulated the anisotropic magnetoresistance (AMR) in 3–4 nm manganite films using the ferroelectric field effect—a method that electrostatically varies the carrier density without affecting the lattice distortion. While significant changes have been induced in TC and p, the AMR ratio remains the same when the magnetic state is not changed. This scaling behavior is in striking contrast to chemical doping results, where similar modulation of the carrier concentration (~0.1/Mn) changes the AMR ratio by ≥30%. The results reveal unambiguously the dominant role of chemical distortion in determining the AMR in manganites.


Solute/Defect-Mediated Pathway For Rapid Nanoprecipitation In Solid Solutions: Γ Surface Analysis In Fcc Al-Ag, Daniel Finkenstadt, Duane D. Johnson Jan 2006

Solute/Defect-Mediated Pathway For Rapid Nanoprecipitation In Solid Solutions: Γ Surface Analysis In Fcc Al-Ag, Daniel Finkenstadt, Duane D. Johnson

Duane D. Johnson

In face-centered-cubic (fcc) Al, stacking fault energy (SFE) is high at ca. 150mJ/m2, inhibiting stacking fault (SF) formation and dislocation motion. Yet Ag-rich hcp precipitates form rapidly in Al-rich fcc Al-Ag, even as the energy difference ΔEhcp−fcc between hcp and fcc homogeneous solid solution increases with Ag content. Using electronic density functional theory methods, we calculate the SFE γSF versus distance of Ag (111) planes from intrinsic (isf), extrinsic (esf) and twin (tsf) SFs. We find that an inhomogeneous distribution of Ag solute segregated in layers adjacent to SFs leads to favorable SFE, a manifestation of the well-known Suzuki effect. …


Current Challenges In Autonomous Vehicle Development, Julianna Connelly Stockton, W. S. Hong, R. B. Mahoney, D. A. Sparrow Jan 2006

Current Challenges In Autonomous Vehicle Development, Julianna Connelly Stockton, W. S. Hong, R. B. Mahoney, D. A. Sparrow

Mathematics Faculty Publications

The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In …


Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi Jan 2006

Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, "the plasma pencil," is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the …


Ferromagnetism And Structure Of Epitaxial Cr-Doped Anatase Tio2 Thin Films, T. C. Kaspar, T. Droubay, V. Shutthanandan, S. M. Heald, C. M. Wang, D. E. Mccready, S. Thevuthasan, J. D. Bryan, D. R. Gamelin, A. J. Kellock, M. F. Toney, X. Hong, C. H. Ahn, S. A. Chambers Jan 2006

Ferromagnetism And Structure Of Epitaxial Cr-Doped Anatase Tio2 Thin Films, T. C. Kaspar, T. Droubay, V. Shutthanandan, S. M. Heald, C. M. Wang, D. E. Mccready, S. Thevuthasan, J. D. Bryan, D. R. Gamelin, A. J. Kellock, M. F. Toney, X. Hong, C. H. Ahn, S. A. Chambers

Xia Hong Publications

The materials and magnetic properties of Cr-doped anatase TiO2 thin films deposited on LaAlO3(001) and SrTiO3(001) substrates by oxygen-plasma-assisted molecular beam epitaxy have been studied in detail to elucidate the origin of ferromagnetic ordering. Cr substitution for Ti in the anatase lattice, with no evidence of Cr interstitials, segregation, or secondary phases, was independently confirmed by transmission electron microscopy with energy dispersive x-ray spectroscopy, extended x-ray absorption fine structure, and Rutherford backscattering spectrometry in the channeling geometry. Epitaxial films deposited at ~0.1 Å/ s were found to have a highly defected crystalline structure, as quantified …


Planar Hall-Effect Magnetic Random Access Memory, Y. Bason, L. Klein, J. -B. Yau, X. Hong, J. Hoffman, C. H. Ahn Jan 2006

Planar Hall-Effect Magnetic Random Access Memory, Y. Bason, L. Klein, J. -B. Yau, X. Hong, J. Hoffman, C. H. Ahn

Xia Hong Publications

We suggest a type of magnetic random access memory (MRAM) that is based on the phenomenon of the planar Hall effect (PHE) in magnetic films, and we demonstrate this idea with manganite films. The PHE-MRAM is structurally simpler than the currently developed MRAM that is based on magnetoresistance tunnel junctions, with the tunnel junction structure being replaced by a single-layer film.


Plasma Treatment Of Bulk Niobium Surfaces For Srf Cavities, M. Rašković, L. Vuškovic, S. Popović, L. Phillips, A. -M. Valente-Feliciano, S. B. Radovanov, L. Godet Jan 2006

Plasma Treatment Of Bulk Niobium Surfaces For Srf Cavities, M. Rašković, L. Vuškovic, S. Popović, L. Phillips, A. -M. Valente-Feliciano, S. B. Radovanov, L. Godet

Physics Faculty Publications

Two types of electric discharges were used to demonstrate the validity of plasma surface treatment for superconducting radio-frequency (SRF) cavities. The experiments were performed on disc-shaped Nb samples and compared with identical samples treated with buffer chemical polishing (BCP) techniques. Surface analysis indicates comparable or superior properties of plasma-treated samples. These promising results are still preliminary and additional work is in progress.


Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou Jan 2006

Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional …


Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov Sep 2005

Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov

Duane D. Johnson

Although the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) is used widely to configurationally average and get electronic structures and energies of disordered alloys, a single-site CPA misses local environment effects, including short-range order (SRO). A proposed nonlocal CPA (NLCPA) recovers translational invariance of the effective medium via k-space coarse graining from the dynamical cluster approximation (DCA), where corrections are systematic as cluster size increases. We implement a first-principles KKR-NLCPA/DCA and show the effects of environment, including SRO, on the electronic structures of fcc CuAu and bcc NiAl.


Time-Of-Flight Emission Profiles Of The Entire Plume Using Fast Imaging During Pulsed Laser Deposition Of Yba2Cu3O7−X, Carl J. Druffner, Glen P. Perram, Rand R. Biggers Sep 2005

Time-Of-Flight Emission Profiles Of The Entire Plume Using Fast Imaging During Pulsed Laser Deposition Of Yba2Cu3O7−X, Carl J. Druffner, Glen P. Perram, Rand R. Biggers

Faculty Publications

Emission time-of-flight (TOF) profiles have been obtained using gated imagery to further the process control during the pulsed laser deposition of the high temperature superconductor, YBa2Cu3O7−x⁠. An intensified charge coupled device array was used to obtain a sequence of plume images at 10ns temporal resolution and 0.2mm spatial resolution. Plume imagery is transformed to TOF profiles and pulse-to-pulse variations removed using physically based smoothing techniques. Comparison with non-imaging sensors establishes excellent agreement, with systematic uncertainties in streaming speed and temperatures of less than 15% and 8%, respectively. The resulting streaming speeds of 0.4–1.2×10 …


Genetic Programming For Multitimescale Modeling, Kumara Sastry, Duane D. Johnson, David E. Goldberg, Pascal Bellon Aug 2005

Genetic Programming For Multitimescale Modeling, Kumara Sastry, Duane D. Johnson, David E. Goldberg, Pascal Bellon

Duane D. Johnson

A bottleneck for multitimescale thermally activated dynamics is the computation of the potential energy surface. We explore the use of genetic programming (GP) to symbolically regress a mapping of the saddle-point barriers from only a few calculated points via molecular dynamics, thereby avoiding explicit calculation of all barriers. The GP-regressed barrier function enables use of kinetic Monte Carlo to simulate real-time kinetics (seconds to hours) based upon realistic atomic interactions. To illustrate the concept, we apply a GP regression to vacancy-assisted migration on a surface of a concentrated binary alloy (from both quantum and empirical potentials) and predict the diffusion …


A Simple Electronic Speckle Pattern Interferometry System Using Holographic Optical Elements, Guntaka Tulasi Sridhar Reddy Aug 2005

A Simple Electronic Speckle Pattern Interferometry System Using Holographic Optical Elements, Guntaka Tulasi Sridhar Reddy

Doctoral

The aim of the work reported in this thesis is to develop a simple electronic speckle pattern interferometry (ESPI) system by combining holographic optical element technology with speckly interferometry. A holographic optical element is used in an ESPI system instead of the lenses, mirrors, beam splitters and beam combiners which are usually required in a conventional system. The final ESPI system consists only of a single holographic element, laser and CCD camera. Many currently available systems are complicated and consist of expensive optics that can be difficult to align. Even the simplest require several conventional optical elements to manipulate the …


Studies On Novel Semiconductor Detectors And Front-End Electronics For Heavy Flavor Decay Studies, Gustavo Kertzscher May 2005

Studies On Novel Semiconductor Detectors And Front-End Electronics For Heavy Flavor Decay Studies, Gustavo Kertzscher

Honors Capstone Projects - All

I have studied novel semiconductor detectors designed to provide precise space point information of the trajectory of charged subatomic particles produced in high energy physics (HEP) collisions. The technological thrust aims toward maintaining good performance of these detectors in a hard radiation environment for an extended period of time. My studies approached two different types of silicon devices: a whole wafer comprised of test structures and pixel devices designed for the inner vertex detector of the BTeV experiment, and small test structures of a novel type of quasi-3D detectors developed in the context of the CERN RD50 collaboration. This collaboration …


Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne Apr 2005

Tb3+-Doped K Pb2Br5: Low-Energy Phonon Mid-Infrared Laser Crystal, U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne

Faculty Publications

No abstract provided.


Crossover Energetics For Halogenated Si(100): Vacancy Line Defects, Dimer Vacancy Lines, And Atom Vacancy Lines, G. J. Xu, Nikolai A. Zarkevich, Abhishek Agrawal, A. W. Signore, B. R. Trenhaile, Duane D. Johnson, J. H. Weaver Mar 2005

Crossover Energetics For Halogenated Si(100): Vacancy Line Defects, Dimer Vacancy Lines, And Atom Vacancy Lines, G. J. Xu, Nikolai A. Zarkevich, Abhishek Agrawal, A. W. Signore, B. R. Trenhaile, Duane D. Johnson, J. H. Weaver

Duane D. Johnson

We investigated surface patterning of I-Si(100)-(2×1) both experimentally and theoretically. Using scanning tunneling microscopy, we first examined I destabilization of Si(100)-(2×1) at near saturation. Dimer vacancies formed on the terraces at 600 K, and they grew into lines that were perpendicular to the dimer rows, termed vacancy line defects. These patterns were distinctive from those induced by Cl and Br under similar conditions since the latter formed atom and dimer vacancy lines that were parallel to the dimer rows. Using first-principles density functional theory, we determined the steric repulsive interactions associated with iodine and showed how the observed defect patterns …


Low-Temperature Ferromagnetic Properties Of The Diluted Magnetic Semiconductor Sb2-X Crx Te3 ., Jeffrey Dyck, Č. Drašar, P. LošŤÁK, C. Uher Mar 2005

Low-Temperature Ferromagnetic Properties Of The Diluted Magnetic Semiconductor Sb2-X Crx Te3 ., Jeffrey Dyck, Č. Drašar, P. LošŤÁK, C. Uher

Jeffrey Dyck

We report on magnetic and electrical transport properties of Sb2-x Crx Te3 single crystals with 0⩽x⩽0.095 over temperatures from 2 K to 300 K . A ferromagnetic state develops in these crystals at low temperatures with Curie temperatures that are proportional to x (for x>0.014 ), attaining a maximum value of 20 K for x=0.095 . Hysteresis below TC for the applied field parallel to the c axis is observed in both magnetization and Hall-effect measurements. Magnetic as well as transport data indicate that Cr takes the 3+ (3 d3 ) valence state, substituting for antimony in the host …


Electrical Activation Studies Of Silicon Implanted AlXGa1-XN, Timothy W. Zens Mar 2005

Electrical Activation Studies Of Silicon Implanted AlXGa1-XN, Timothy W. Zens

Theses and Dissertations

Electrical activation studies of silicon implanted AlxGa1-xN grown on sapphire substrates were conducted as a function of ion dose, anneal temperature, and anneal time. Silicon ion doses of 1x1013, 5x1013, and 1x1014 cm-2 were implanted in AlxGa1-xN samples with aluminum mole fractions of 0.1 and 0.2 at an energy of 200 keV at room temperature. The samples were proximity cap annealed at temperatures from 1100 to 1350 ºC and anneal times of 20 to 40 minutes with a 500 Å thick AlN cap in a nitrogen environment. The Hall coefficient …


Limitations In Time Resolved Photoluminescence Of Gallium Nitride Using A Streak Camera, Thomas R. Jost Mar 2005

Limitations In Time Resolved Photoluminescence Of Gallium Nitride Using A Streak Camera, Thomas R. Jost

Theses and Dissertations

Semiconductor performance is often characterized in terms of the rate at which its carrier recombination processes occur. Carrier recombination, including radiative, and Shockley-Read-Hall and Auger (both nonradiative), occurs at ultra-fast times in the picosecond or femtosecond regimes. A device which can measure both spectral data and temporal phenomena at this speed is the streak camera. The capability to do time-resolved spectroscopy of wide band gap semiconductors using a streak camera has been established at AFIT for the first time. Time resolved photoluminescence (TRPL) from samples of gallium nitride were measured at temperatures of 5 K over spectral bands of 36.6 …


Daytime Detection Of Space Objects, Alistair D. Funge Mar 2005

Daytime Detection Of Space Objects, Alistair D. Funge

Theses and Dissertations

Space Situational Awareness (SSA) requires repeated object updates for orbit accuracy. Detection of unknown objects is critical. A daytime model was developed that evaluated sun flares and assessed thermal emissions from space objects. Iridium satellites generate predictable sun glints. These were used as a model baseline for daytime detections. Flares and space object thermal emissions were examined for daytime detection. A variety of geometric, material and atmospheric characteristics affected this daytime detection capability. In a photon noise limited mode, simulated Iridium flares were detected. The peak Signal-to- Noise Ratios (SNR) were 6.05e18, 9.63e5, and 1.65e7 for the nighttime, daytime and …


Modeling The Infrared Intensity Of A Large Commercial Aircraft, Ruben Martinez Mar 2005

Modeling The Infrared Intensity Of A Large Commercial Aircraft, Ruben Martinez

Theses and Dissertations

Measuring the infrared signature of large civilian aircraft has become increasingly important due to the proliferation of man-portable air defense systems (MANPADS) and the increasing threat of their use by terrorists. Because of the range of these shoulder-fired weapons, most aircraft flying over 20,000 feet are safe from the threat; however, aircraft taking-off or landing are extremely vulnerable. A radiometric model was developed to simulate a large commercial aircraft’s infrared intensity during these two critical phases of flight. The radiometric model was largely based on the dimensions of a Boeing 747-400 aircraft. It is capable of simulating elevation angles between …


Importance Of Thermal Disorder On The Properties Of Alloys: Origin Of Paramagnetism And Structural Anomalies In Bcc-Based Fe1−Xalx, Andrei V. Smirnov, W. A. Shelton, Duane D. Johnson Feb 2005

Importance Of Thermal Disorder On The Properties Of Alloys: Origin Of Paramagnetism And Structural Anomalies In Bcc-Based Fe1−Xalx, Andrei V. Smirnov, W. A. Shelton, Duane D. Johnson

Duane D. Johnson

Fe1−xAlx exhibits interesting magnetic and anomalous structural properties as a function of composition and sample processing conditions arising from thermal or off-stoichiometric chemical disorder, and, although well studied, these properties are not understood. In stoichiometric B2 FeAl, including the effects of partial long-range order, i.e., thermal antisites, we find the experimentally observed paramagnetic response with nonzero local moments, in contrast to past investigations that find either a ferromagnetic or nonmagnetic state, both inconsistent with experiment. Moreover, from this magnetochemical coupling, we are able to determine the origins of the observed lattice constant anomalies found in Fe1−xAlx for x≃0.25–0.5 under various …


Specification Of Jecp/Holz, An Interactive Computer Program For Simulation Of Holz Pattern, Xingzhong Li Jan 2005

Specification Of Jecp/Holz, An Interactive Computer Program For Simulation Of Holz Pattern, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

1. Purpose of the program 2. Graphic user interface and program design 3. Formulas for calculating the positions of the HOLZ lines 4. System requirement 5. Installation and user instruction 6. How to contact the author 7. References

1. Purpose of the program JECP/HOLZ (Li, 2005a) is one computer program in the Java Electron Crystallography Package (JECP), which is designed and written by Dr. XingZhong Li. The package is developed for quantitative electron diffraction and image processing purpose, JECP/HOLZ is an interactive program for simulation of the higher-order Laue zone (HOLZ) lines using kinematical approximation and a first-order dynamic correction. …


Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla Jan 2005

Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla

Shireen Adenwalla Papers

Data on the neutron detection capabilities of a variety of boron carbide/Si heterojunction diodes is presented. The pulse height spectra are compared with previously measured conversion layer devices and the variations in shape and position of the peaks are discussed.


Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi Jan 2005

Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

One of the attractive features of nonthermal atmospheric pressure plasmas is the ability to achieve enhanced gas phase chemistry without the need for elevated gas temperatures. This attractive characteristic recently led to their extensive use in applications that require low temperatures, such as material processing and biomedical applications. The agents responsible for the efficient plasma reactivity are the ultraviolet (UV) photons and the chemically reactive species. In this paper, in order to optimize the UV radiation and reactive species generation efficiency, the plasma was generated by a dielectric barrier discharge driven by unipolar submicrosecond square pulses. To keep the discharge …


Magnetic Moments And Adiabatic Magnetization Of Free Cobalt Clusters, Xiaoshan Xu, Shuangye Yin, Ramiro Moro, Walt A. De Heer Jan 2005

Magnetic Moments And Adiabatic Magnetization Of Free Cobalt Clusters, Xiaoshan Xu, Shuangye Yin, Ramiro Moro, Walt A. De Heer

Xiaoshan Xu Papers

Magnetizations and magnetic moments of free cobalt clusters CoN (12< N <200) in a cryogenic (25 K ≤ T ≤ 100 K) molecular beam were determined from Stern-Gerlach deflections. All clusters preferentially deflect in the direction of the increasing field and the average magnetization resembles the Langevin function for all cluster sizes even at low temperatures. We demonstrate in the avoided crossing model that the average magnetization may result from adiabatic processes of rotating and vibrating clusters in the magnetic field and that spin relaxation is not involved. This resolves a longstanding problem in the interpretation of cluster beam deflection experiments with implications for nanomagnetic systems in …


Examining The Screening Limit Of Field Effect Devices Via The Metal-Insulator Transition, X. Hong, A. Posadas, C. H. Ahn Jan 2005

Examining The Screening Limit Of Field Effect Devices Via The Metal-Insulator Transition, X. Hong, A. Posadas, C. H. Ahn

Xia Hong Publications

The electronic screening length, the distance over which an electric field is attenuated in a material, imposes a lower physical bound on the lateral size scaling of semiconductor field effect devices. Alternatives will be needed to achieve devices whose characteristic dimensions approach a nanometer. In this work, we demonstrate the atomic-scale nature of screening at high electron densities, using the polarization field of a ferroelectric oxide, Pb(Zr,Ti)O3, to electrostatically modulate the metallicity of ultrathin manganite La1−xSrxMnO3 (LSMO) films near the metal-insulator transition. Within the screening length, the transport characteristics of LSMO vary sharply …


Measurement Of Magnetic Moments Of Free BiNMnM Clusters, Shuangye Yin, Xiaoshan Xu, Ramiro Moro, Walt A. De Heer Jan 2005

Measurement Of Magnetic Moments Of Free BiNMnM Clusters, Shuangye Yin, Xiaoshan Xu, Ramiro Moro, Walt A. De Heer

Xiaoshan Xu Papers

Magnetic properties of free BiNMnM clusters (N=2–20, M=0–7) are determined from Stern-Gerlach deflections at low temperature (46.5 K). Pure bismuth clusters with odd number of atoms exhibit paramagnetic deflections. The addition of manganese atoms produces a ferromagnetic response which is strongly size dependent. Certain combinations have very large magnetic moments such as Bi5Mn3, Bi9 Mn4, Bi10Mn5, and Bi12Mn6.


Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang Jan 2005

Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang

Mathematics & Statistics Faculty Publications

Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in …


Reliable First-Principles Alloy Thermodynamics Via Truncated Cluster Expansions, Nikolai A. Zarkevich, Duane D. Johnson Jun 2004

Reliable First-Principles Alloy Thermodynamics Via Truncated Cluster Expansions, Nikolai A. Zarkevich, Duane D. Johnson

Nikolai A. Zarkevich

In alloys cluster expansions (CE) are increasingly used to combine first-principles electronicstructure calculations and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3V, where the CE has failed unpredictably, and now show agreement to a range of …


Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko Apr 2004

Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko

Kirill Belashchenko Publications

Using the spin-spiral formulation of the tight-binding linear muffin-tin orbital method, the principal components of the exchange stiffness tensor are calculated for typical hard magnets including tetragonal CoPt-type and hexagonal YCo5 alloys. The exchange stiffness is strongly anisotropic in all studied alloys. This anisotropy makes the domain wall surface tension anisotropic. Competition between this anisotropic surface tension and magnetostatic energy controls the formation and dynamics of nanoscale domain structures in hard magnets. Anisotropic domain wall bending is described in detail from the general point of view and with application to cellular Sm–Co magnets. It is shown that the repulsive …