Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

2009

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 30

Full-Text Articles in Physics

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi Nov 2009

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi

Faculty and Research Publications

In order to help introductory physics students understand and learn to solve problems with circuits, we must first understand how they differ from experts. This preliminary study focuses on problem-solving dealing with electrical circuits. We investigate difficulties novices have with circuits and compare their work with those of experts. We incorporate the use of an eye-tracker to investigate any possible differences or similarities on how experts and novices solve electrical circuit problems. Our results show similarities in gaze patterns among all subjects on the components of the circuit. We further found that experts would look back at the circuit while …


Coupled Ray-Tracing And Fokker-Planck Ebw Modeling For Spherical Tokamaks, Jakub Urban, Joan Decker, Y. Peysson, Josef Preinhaelter, Gary Taylor, Linda L. Vahala, George Vahala Nov 2009

Coupled Ray-Tracing And Fokker-Planck Ebw Modeling For Spherical Tokamaks, Jakub Urban, Joan Decker, Y. Peysson, Josef Preinhaelter, Gary Taylor, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations—typical NSTX discharges are employed. EBW parameters, such as frequency, antenna position and direction, are varied and optimized for particular configurations and objectives. In this way, we show the versatility of EBWs.


Effect Of Surfactants On The Structure And Morphology Of Magnesium Borate Hydroxide Nanowhiskers Synthesized By Hydrothermal Route, Latha Kumari, Wz Li, Shrinivas Kulkarni, Kh Wu, Wei Chen, Chunlei Wang, Charles H. Vannoy, Roger M. Leblanc Oct 2009

Effect Of Surfactants On The Structure And Morphology Of Magnesium Borate Hydroxide Nanowhiskers Synthesized By Hydrothermal Route, Latha Kumari, Wz Li, Shrinivas Kulkarni, Kh Wu, Wei Chen, Chunlei Wang, Charles H. Vannoy, Roger M. Leblanc

Department of Physics

Magnesium borate hydroxide (MBH) nanowhiskers were synthesized using a one step hydrothermal process with different surfactants. The effect surfactants have on the structure and morphology of the MBH nanowhiskers has been investigated. The X-ray diffraction profile confirms that the as-synthesized material is of single phase, monoclinic MgBO2(OH). The variations in the size and shape of the different MBH nanowhiskers have been discussed based on the surface morphology analysis. The annealing of MBH nanowhiskers at 500 °C for 4 h has significant effect on the crystal structure and surface morphology. The UV–vis absorption spectra of the MBH nanowhiskers synthesized …


Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson Sep 2009

Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson

Duane D. Johnson

Site-centered, electronic-structure methods use an expansion inside nonoverlapping “muffin-tin” (MT) spheres plus an interstitial basis set. As the boundary separating the more spherical from nonspherical density between atoms, the “saddle-point” radii (SPR) in the density provide an optimal spherical region for expanding in spherical harmonics, as used in augmented plane wave, muffin-tin orbital, and multiple-scattering [Korringa, Kohn, and Rostoker (KKR)] methods. These MT-SPR guarantee unique, convex Voronoi polyhedra at each site, in distinction to Bader topological cells. We present a numerically fast, two-center expansion to find SPR a priori from overlapping atomic charge densities, valid also for disordered alloys. We …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Analysis On Strategies Of Liners Against The Global Financial Crisis, Feng Chen Jul 2009

Analysis On Strategies Of Liners Against The Global Financial Crisis, Feng Chen

World Maritime University Dissertations

No abstract provided.


Thermodynamic Stability Of Transition States In Nanosystems, Alexander Umantsev Jul 2009

Thermodynamic Stability Of Transition States In Nanosystems, Alexander Umantsev

Chemistry and Physics Faculty Working Papers

We present a theory which shows that, in a closed system of fixed volume capable of undergoing a phase transition, the transition state can be thermodynamically stable against the bulk phases if a certain material parameters criterion is fulfilled. In a small system below the critical size the transition state turns into a globally stable phase that can be observed experimentally. This effect is analogous to stabilization of icosahedral structures in clusters of certain sizes and energies. Stabilization of the transition state in small systems of limited resources allows us to conjecture that, in the case of a melting/freezing transition …


Research On Fractal Mathematics And Some Application In Mechanics, Yang Xiaojun Jun 2009

Research On Fractal Mathematics And Some Application In Mechanics, Yang Xiaojun

Xiao-Jun Yang

Since Mandelbrot proposed the concept of fractal in 1970s’, fractal has been applied in various areas such as science, economics, cultures and arts because of the universality of fractal phenomena. It provides a new analytical tool to reveal the complexity of the real world. Nowadays the calculus in a fractal space becomes a hot topic in the world. Based on the established definitions of fractal derivative and fractal integral, the fundamental theorems of fractal derivatives and fractal integrals are investigated in detail. The fractal double integral and fractal triple integral are discussed and the variational principle in fractal space has …


Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson Jun 2009

Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson

Duane D. Johnson

Twinning is one of most prevalent deformation mechanisms in materials. Having established a quantitative theory to predict onset twinning stress τcrit in fcc elemental metals from their generalized planar-fault-energy (GPFE) surface, we exemplify its use in alloys where the Suzuki effect (i.e., solute energetically favors residing at and near planar faults) is operative; specifically, we apply it in Cu-xAl (x is 0, 5, and 8.3 at. %) in comparison with experimental data. We compute the GPFE via density-functional theory, and we predict the solute dependence of the GPFE and τcrit, in agreement with measured values. We show that τcrit correlates …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson Apr 2009

Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson

Duane D. Johnson

Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd, the PES is described by coupled shear (ϵ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,ϵ). We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while …


Electron Multipactor: Theory Review, Comparison And Modeling Of Mitigation Techniques In Icepic, Neil G. Rogers Mar 2009

Electron Multipactor: Theory Review, Comparison And Modeling Of Mitigation Techniques In Icepic, Neil G. Rogers

Theses and Dissertations

Mitigation approaches for single surface multipactor at dielectric windows are investigated using Particle-In-Cell (PIC) simulations. Initially baseline susceptibility diagrams are constructed analytically and compared with self-consistent, dynamic system trajectories. The power deposited on the surface of a dielectric window in an HPM system is considered using three different methods and the results of PIC simulations. Geometric mitigation is then considered by varying the window orientation with respect to the HPM electric held. Small angular deviations, less than 20 degrees, from the nominal case of normal incidence show dramatic changes in the susceptibility diagram. A materials approach to mitigation is then …


Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt Jan 2009

Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate spin-charge coupling in multiferroic oxides, we measured the optical properties of BiFeO3. Although the direct 300 K charge gap is observed at 2.67 eV, absorption onset actually occurs at much lower energy with Fe3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. We employ the sensitivity of these magnon sidebands to map out the magnetic-fieldtemperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near …


Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen Jan 2009

Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen

Jonathan J Stanger

Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the concept …


Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger Jan 2009

Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger

Jonathan J Stanger

A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymer-solvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip …


The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves Jan 2009

The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves

Jonathan J Stanger

Poly(vinyl alcohol) (PVOH) was electrospun using different methods to charge the polymer solution. A positive high voltage relative to the collecting electrode significantly increased the fibre deposition rate. Electron microscopy showed that approximately half of the increase in fibre mass was due to thicker fibres being deposited. The current flowing from the grounded electrode was measured to determine the charge carried on the PVOH jet. This showed that for a positive voltage charging condition there is a much larger current and hence more charge carriers generated in the PVOH solution. As a result, more mass is ejected from the Taylor …


The Fundamentals Of Local Fractional Derivative Of The One-Variable Non-Differentiable Functions, Yang Xiaojun Jan 2009

The Fundamentals Of Local Fractional Derivative Of The One-Variable Non-Differentiable Functions, Yang Xiaojun

Xiao-Jun Yang

Based on the theory of Jumarie’s fractional calculus, local fractional derivative is modified in detail and its fundamentals of local fractional derivative are proposed in this paper. The uniqueness of local fractional derivative is obtained and the Rolle’s theorem, the mean value theorem, the Cauchy’s generalized mean value theorem and the L’Hospital’s rules are proved.


Local Fractional Newton’S Method Derived From Modified Local Fractional Calculus, Yang Xiao-Jun Jan 2009

Local Fractional Newton’S Method Derived From Modified Local Fractional Calculus, Yang Xiao-Jun

Xiao-Jun Yang

A local fractional Newton’s method, which is derived from the modified local fractional calculus , is proposed in the present paper. Its iterative function is obtained and the convergence of the iterative function is discussed. The comparison between the classical Newton iteration and the local fractional Newton iteration has been carried out. It is shown that the iterative value of the local fractional Newton method better approximates the real-value than that of the classical one.


A Neural Network: Family Competition Genetic Algorithm And Its Application In Electromagnetic Optimization, Chien Hsun Chen, P. Y. Chen, H. Weng Jan 2009

A Neural Network: Family Competition Genetic Algorithm And Its Application In Electromagnetic Optimization, Chien Hsun Chen, P. Y. Chen, H. Weng

Chien Hsun Chen

This study proposes a neural network-family competition genetic algorithm (NN-FCGA) for solving the electromagnetic (EM) optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN) and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA) to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are …


Measurement Of Direct Fₒ(980) Photoproduction On The Proton, K. P. Adhikari, H. Bagdasaryan, S. Bültmann, S. L. Careccia, K. V. Dharmawardane, G. E. Dodge, N. Kalantarians, A. Klein, A.V. Klimenko, S. E. Kuhn, J. Lanchiet, M. R. Niroula, J. Zhang Jan 2009

Measurement Of Direct Fₒ(980) Photoproduction On The Proton, K. P. Adhikari, H. Bagdasaryan, S. Bültmann, S. L. Careccia, K. V. Dharmawardane, G. E. Dodge, N. Kalantarians, A. Klein, A.V. Klimenko, S. E. Kuhn, J. Lanchiet, M. R. Niroula, J. Zhang

Physics Faculty Publications

We report on the results of the first measurement of exclusive f0(980) meson photoproduction on protons for Eγ = 3.0–3.8  GeV and −t = 0.4–1.0  GeV2 . Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π channel by performing a partial wave analysis of the reaction γp→pπ+π . Clear evidence of the f0(980) meson was found in the interference between P and S waves at M π+π− ∼1  GeV. The S -wave differential …


Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt Jan 2009

Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt

Xiaoshan Xu Papers

We measured the low-lying crystal field levels of Nd3+ in Nd3Ga5SiO14 via magneto-optical spectroscopy and employed the extracted energies, magnetic moments, and symmetries to analyze the magnetic properties and test the spin liquid candidacy of this material. The exchange interaction is surprisingly small, a discovery that places severe constraints on models used to describe the ground state of this system. Further, it demonstrates the value of local-probe photophysical techniques for rare-earthcontaining materials where bulk property measurements can be skewed by low-lying electronic structure.


Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan Jan 2009

Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan

Xiaoshan Xu Papers

The interplay between spin waves (magnons) and electronic structure in materials leads to the creation of additional bands associated with electronic energy levels which are called magnon sidebands. The large difference in the energy scales between magnons (meV) and electronic levels (eV) makes this direct interaction weak and hence makes magnon sidebands difficult to probe. Linear light absorption and scattering techniques at low temperatures are traditionally used to probe these sidebands. Here we show that optical secondharmonic generation, as the lowest-order nonlinear process, can successfully probe the magnon sidebands at room temperature and up to 723 K in bismuth ferrite, …


Anisotropic Magnetoresistance And Planar Hall Effect In Epitaxial Films Of La0.7ca0.3mno3, N. Naftalis, Y. Bason, J. Hoffman, X. Hong, C. H. Ahn, L. Klein Jan 2009

Anisotropic Magnetoresistance And Planar Hall Effect In Epitaxial Films Of La0.7ca0.3mno3, N. Naftalis, Y. Bason, J. Hoffman, X. Hong, C. H. Ahn, L. Klein

Xia Hong Publications

We measured the anisotropic magnetoresistance (AMR) and the planar Hall effect (PHE) in a [001] oriented epitaxial thin film of La0.7Ca0.3MnO3 (LCMO) as a function of magnetic field, temperature, and current direction relative to the crystal axes. We find that both AMR and PHE in LCMO depend strongly on the current orientation relative to the crystal axes, and we demonstrate the applicability of AMR and PHE equations based on a fourth order magnetoresistance tensor consistent with the film symmetry.


High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated On Epitaxial Ferroelectric Gate Oxides, X. Hong, A. Posadas, K. Zou, C. H. Ahn, J. Zhu Jan 2009

High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated On Epitaxial Ferroelectric Gate Oxides, X. Hong, A. Posadas, K. Zou, C. H. Ahn, J. Zhu

Xia Hong Publications

The carrier mobility μ of few-layer graphene (FLG) field-effect transistors increases tenfold when the SiO2 substrate is replaced by single-crystal epitaxial Pb(Zr0.2Ti0:8)O3 (PZT). In the electron-only regime of the FLG, μ reaches 7 X 104 cm2 / Vs at 300 K for n = 2.4 X 1012=cm2, 70% of the intrinsic limit set by longitudinal acoustic (LA) phonons; it increases to 1.4 X 105 cm2 / Vs at low temperature. The temperature-dependent resistivity p(T) reveals a clear signature of LA phonon scattering, yielding …


Quantum Scattering Time And Its Implications On Scattering Sources In Graphene, X. Hong, K. Zou, J. Zhu Jan 2009

Quantum Scattering Time And Its Implications On Scattering Sources In Graphene, X. Hong, K. Zou, J. Zhu

Xia Hong Publications

We determine the quantum scattering time Tq in six graphene samples with mobility of 4 400<μ <17 000 cm2 /V s over a wide range of carrier density (1.2<n<6X1012/cm2). Tq derived from Shubnikov–de Haas oscillation ranges ~25–74 fs, corresponding to a single-particle level broadening of 4.5–13 meV. The ratio of the transport to quantum scattering time Tt /Tq spans 1.5–5.1 in these samples, which can be quantitatively understood combining scattering from short-ranged centers and charged impurities located within 2 nm of the graphene sheet. Our results suggest that charges residing on the SiO …


Design Optimization Of Superconducting Parallel-Bar Cavities, Subashini De Silva, Jean R. Delayen Jan 2009

Design Optimization Of Superconducting Parallel-Bar Cavities, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The parallel-bar structure is a new superconducting geometry whose features and properties may have significant advantages over conventional superconducting deflecting and crabbing cavities for a number of applications. Jefferson Lab is in need for a 499 MHz, 11 GeV rf separator as part of its 12 GeV upgrade program. We report on design optimization studies performed todate for this and other applications.


Options For An 11 Gev Rf Beam Separator For The Jefferson Lab Cebaf Upgrade, Jean R. Delayen, M. Spata, H. Wang Jan 2009

Options For An 11 Gev Rf Beam Separator For The Jefferson Lab Cebaf Upgrade, Jean R. Delayen, M. Spata, H. Wang

Physics Faculty Publications

The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability is provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator cavity is a two-rod, two-cell TEM mode type resonator, which has high shunt impedance. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room …


A New Tem-Type Deflecting And Crabbing Rf Structure, Jean R. Delayen, H. Wang Jan 2009

A New Tem-Type Deflecting And Crabbing Rf Structure, Jean R. Delayen, H. Wang

Physics Faculty Publications

A new type of rf structure for the deflection and crabbing of particle bunches is introduced. It is comprised of a number of parallel TEM-resonant lines operating in opposite phase from each other. One of its main advantages is its compactness compared to conventional crabbing cavities operating in the TM110 mode, thus allowing low frequency designs. The properties and characteristics of this type of structure are presented.


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi Jan 2009

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi

Faculty Publications

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced when there …


Problems Of Local Fractional Definite Integral Of The One-Variable Non-Differentiable Function, Yang Xiao-Jun Dec 2008

Problems Of Local Fractional Definite Integral Of The One-Variable Non-Differentiable Function, Yang Xiao-Jun

Xiao-Jun Yang

It is proposed that local fractional calculas introduced by Kolwankar and Gangal is extended by the concept of Jumarie’s fractional calculus and local fractional definite integral is redefined. The properties and the theorems of local fractional calculus are discussed in this paper.