Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Application Of The Interaction Picture To Reactive Scattering In One Dimension, Michael J. Maclachlan Dec 1999

Application Of The Interaction Picture To Reactive Scattering In One Dimension, Michael J. Maclachlan

Theses and Dissertations

The interaction picture is used together with the channel-packet method in a new time-dependent approach to compute reactive scattering matrix elements. The channelpacket method enables the use of the interaction picture for computing reactive S-matrix elements by splitting the computational effort into two parts. First, asymptotic reactant and product wavepackets are individually propagated into the interaction region of the potential to form Moller states. The interaction picture, in contrast to the usual Schrödinger picture of quantum mechanics, is so constructed that a wavefunction that experiences no change in potential (that is, a free-particle wavefunction) remains always fixed, with no translation …


Implementation Of A Two-Dimensional Hydrodynamic Shock Code Based Upon The Weighted Average Flux Method, Mark P. Wittig Jun 1999

Implementation Of A Two-Dimensional Hydrodynamic Shock Code Based Upon The Weighted Average Flux Method, Mark P. Wittig

Theses and Dissertations

Numerical modeling of shock propagation and reflection is of interest to the Department of Defense (DoD). Propriety state-of-the-art codes based upon E. F. Toro's weighted average flux (WAF) method are being used to investigate complex shock reflection phenomena. Here we develop, test, and validate a one-dimensional hydrodynamic shock code. We apply WAF to Gudonov's first-order upwind method to achieve second-order accuracy. Oscillations, typical of second-order methods, are then removed using adaptive weight limiter functions based upon total variation diminishing (TVD) flux limiters. An adaptive Riemann solver routine is also implemented to improve computational efficiency. This one-dimensional code is then extended …


Incommensurate And Commensurate Antiferromagnetic Spin Fluctuations In Cr And Cr Alloys From Ab Initio Dynamical Spin Susceptibility Calculations, Duane D. Johnson, J. Pulter, B. Ginatempo, E. Bruno, J. B. Staunton Apr 1999

Incommensurate And Commensurate Antiferromagnetic Spin Fluctuations In Cr And Cr Alloys From Ab Initio Dynamical Spin Susceptibility Calculations, Duane D. Johnson, J. Pulter, B. Ginatempo, E. Bruno, J. B. Staunton

Duane D. Johnson

A scheme for making ab initio calculations of the dynamic paramagnetic spin susceptibilities of solids at finite temperatures is described. It is based on time-dependent density functional theory and employs an electronic multiple scattering formalism. Incommensurate and commensurate antiferromagnetic spin fluctuations in paramagnetic Cr and compositionally disordered Cr95V5 and Cr95Re5 alloys are studied together with the connection with the nesting of their Fermi surfaces. We find that the spin fluctuations can be described rather simply in terms of an overdamped oscillator model. Good agreement with inelastic neutron scattering data is obtained.


Optimization Of A Multilayer Photothermal Sensor For Infrared Spectroscopy, Janine O.J. Wiggins Mar 1999

Optimization Of A Multilayer Photothermal Sensor For Infrared Spectroscopy, Janine O.J. Wiggins

Theses and Dissertations

Tri-layer thermal diffusion modeling was applied to the optimization of a multi-layer reed sensor for use in a photothermal infrared detector. The multi-layer reed sensor deflects in response to increased temperature. Deflection, of angstroms or larger, is measured using an atomic force microscope. A newly developed thermal diffusion model for three layer reeds was combined with an existing two-layer cantilever model, in order to explore the effects of length, operating frequency, and layer thickness on signal to noise ratio. Model behavior is presented, and compared to laboratory results.


Band Structure Anisotropy In Semiconductor Quantum Wells, Steven J. Novotny Mar 1999

Band Structure Anisotropy In Semiconductor Quantum Wells, Steven J. Novotny

Theses and Dissertations

The focus of this research is an investigation of energy band anisotropy in simple quantum well structures. This anisotropy results from the asymmetry of the periodic potential within the crystal lattice. For sufficiently high doping levels, band structure anisotropy is expected to play an important role in the evaluation of the electronic and optical properties of the quantum well structures. The analysis uses a model based on a 6x6 Luttinger-Kohn k.p approach for bulk material valence band structure together with the Envelope Function Approximation. The model is used to analyze Si/SiGe, AlGaAs/GaAs, and GaAs/InGaAs quantum wells for the 001 and …


Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni Mar 1999

Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni

Theses and Dissertations

A survey of space charge structures arising due to inhomogeneities in glow discharges was conducted. Space charge structures associated with tube geometries, the cathode sheath, striations, and shockwaves were examined. Space charge effects on the Electron Energy Distribution Function (EEDF) were explored for a geometric inhomogeneity using an approximate nonlocal solution to the one dimensional Boltzmann equation after Godyak. The approximate solution partially captured qualitative aspects of space charge effects on the EEDF. Simplification of collisional effects and adaptation of an approximate electric field restricted quantitative comparisons with experimental data. It is recommended that any future analysis of space charge …


Surface Resistance Measurements Of Superconducting Niobium Samples With A Triaxial Cavity, Paul Martin Boccard Jan 1999

Surface Resistance Measurements Of Superconducting Niobium Samples With A Triaxial Cavity, Paul Martin Boccard

Physics Theses & Dissertations

This experimental study has revealed and investigated many of the physical issues that affect accurate measurement of the surface resistance for small samples consisting of superconducting niobium films on copper substrates. It is believed that this work provides the groundwork for future research directed towards solving this important problem. Accurate measurement of surface resistance for such samples is needed to allow the rapid evaluation and optimization of the deposition parameters necessary for manufacturing low-loss superconducting niobium films.

A superconducting niobium triaxial cavity was investigated to determine its suitability for measuring the residual surface resistance of copper samples that were sputter-coated …


Synthesis Of Bulk Polycrystalline Indium Nitride At Subatmospheric Pressures., Jeffrey Dyck, K. Kash, C. Hayman, A. Argoitia, M. Grossner, J. Angus, W.-L. Zhou Dec 1998

Synthesis Of Bulk Polycrystalline Indium Nitride At Subatmospheric Pressures., Jeffrey Dyck, K. Kash, C. Hayman, A. Argoitia, M. Grossner, J. Angus, W.-L. Zhou

Jeffrey Dyck

Polycrystalline, wurtzitic indium nitride was synthesized by saturating indium with nitrogen from microwave plasma sources. The structure was confirmed by x-ray diffraction, electron diffraction, and elemental analysis. Two types of growth were observed: (i) dendritic crystals on the original melt surface, and (ii) hexagonal platelets adjacent to the In metal source on the upper edge of the crucible. The method does not involve a foreign substrate to initiate growth and is a potential alternative to the high-pressure techniques normally associated with bulk growth of indium nitride. The lattice parameters were a = 3.5366 ± 0.0005 angstrom and c = 5.7009 …


Growth Of Oriented Thick Films Of Gallium Nitride From The Melt., Jeffrey Dyck, K. Kash, M. Grossner, C. Hayman, A. Argoitia, N. Yang, M.-H. Hong, M. Kordesch, J. Angus Dec 1998

Growth Of Oriented Thick Films Of Gallium Nitride From The Melt., Jeffrey Dyck, K. Kash, M. Grossner, C. Hayman, A. Argoitia, N. Yang, M.-H. Hong, M. Kordesch, J. Angus

Jeffrey Dyck

While significant strides have been made in the optimization of GaN-based devices on foreign substrates, a more attractive alternative would be homoepitaxy on GaN substrates. The primary motivation of this work is to explore the growth of thick films of GaN from the melt for the ultimate use as substrate material. We have previously demonstrated the synthesis of polycrystalline, wurtzitic gallium nitride and indium nitride by saturating gallium metal and indium metal with atomic nitrogen from a microwave plasma source. Plasma synthesis avoids the high equilibrium pressures required when molecular nitrogen is used as the nitrogen source. Here we report …