Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


Magnetic Field Sensors For Detection Of Trapped Flux In Superconducting Radio Frequency Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen Jan 2021

Magnetic Field Sensors For Detection Of Trapped Flux In Superconducting Radio Frequency Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen

Physics Faculty Publications

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. They operate at liquid helium temperatures (2–4 K) to achieve very high quality factors (1010–1011). Trapping of magnetic flux within the superconductor is a significant contribution to the residual RF losses, which limit the achievable quality factor. Suitable diagnostic tools are in high demand to understand the mechanisms of flux trapping in technical superconductors, and the fundamental components of such diagnostic tools are magnetic field sensors. We have studied the performance of commercially available Hall probes, anisotropic magnetoresistive sensors, and flux-gate magnetometers with …


The Effect Of Tube Geometry On The Chiral Plasma, S. Jin, D. Zou, X. Lu, Mounir Laroussi Jan 2019

The Effect Of Tube Geometry On The Chiral Plasma, S. Jin, D. Zou, X. Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

A chiral plasma plume has recently been reported inside a circular quartz tube without the use of an external magnetic field. It is believed that the quartz tube plays an important role in the formation of the chiral plasma plume. In this paper, to better understand how this interesting structure is generated, the effect of the tube geometry on the chiral plasma is investigated. First, the effect of the thickness of the tube wall on the chiral plasma is investigated. It is interesting to find that a too thin or too thick tube wall is not favorable for generating the …


Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya Mar 2015

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya

Jason R. Hattrick-Simpers

A high-throughput high-sensitivity optical technique for measuringmagnetostriction of thin-film composition-spread samples has been developed. It determines the magnetostriction by measuring the induced deflection of micromachined cantilever unimorph samples. Magnetostrictionmeasurements have been performed on as-deposited Fe–Ga and Fe–Ga–Al thin-film composition spreads. The thin-film Fe–Ga spreads display a similar compositional variation of magnetostriction as bulk. A previously undiscovered peak in magnetostriction at low Ga content was also observed and attributed to a maximum in the magnetocrystalline anisotropy. Magnetostrictive mapping of the Fe–Ga–Al ternary system reveals the possibility of substituting up to 8at.%Al in Fe70Ga30 without significant degradation of magnetostriction.


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Mar 2015

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Jason R. Hattrick-Simpers

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.


Magnetic Response Of Aperiodic Wire Networks Based On Fibonacci Distortions Of Square Antidot Lattices, Barry Farmer, Vinayak Bhat, J. Sklenar, Eric Teipel, Justin Woods, J. B. Ketterson, J. Todd Hastings, Lance Delong Mar 2015

Magnetic Response Of Aperiodic Wire Networks Based On Fibonacci Distortions Of Square Antidot Lattices, Barry Farmer, Vinayak Bhat, J. Sklenar, Eric Teipel, Justin Woods, J. B. Ketterson, J. Todd Hastings, Lance Delong

Physics and Astronomy Faculty Publications

The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1  = 1618 nm and d2  = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance …


Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi Feb 2015

Temperature Dependence Of Anisotropic Magnetoresistance In Antiferromagnetic Sr2Iro4, C. Wang, H. Seinige, Gang Cao, J.-S. Zhou, J. B. Goodenough, M. Tsoi

Center for Advanced Materials Faculty Publications

Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr2IrO4 are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr2IrO4 were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an …


Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles Mar 2014

Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion …


Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton Feb 2013

Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify a Ti3+-Li+ complex in TiO2 crystals having the rutile structure. This defect consists of an interstitial Li+ ion adjacent to a substitutional Ti3+ ion (the unpaired electron on the Ti3+ ion provides charge compensation for the Li+ ion). The neutral Ti3+-Li+ complex is best described as a donor-bound small polaron and is similar in structure to the recently reported neutral fluorine and hydrogen donors in TiO2 (rutile). Lithium ions are diffused into the crystals at …


Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata Jul 2012

Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata

Physics Theses & Dissertations

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the …


Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones Apr 2008

Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones

Paul J. Simmonds

In addition to quantized conductance plateaus at integer multiples of 2e2/h, the differential conductance G=dI/dV shows plateaus at 0.25(2e2/h) and 0.75(2e2/h) under applied source-drain bias in In0.75Ga0.25As quantum wires defined by insulated split gates. This observation is consistent with a spin-gap model for the 0.7 structure. Using a tilted magnetic field to induce Landau level crossings, the g factor was measured to be ~9 by the coincidence method. This material, with a mobility of 1.8×105 cm …


Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya Jan 2008

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya

Faculty Publications

A high-throughput high-sensitivity optical technique for measuringmagnetostriction of thin-film composition-spread samples has been developed. It determines the magnetostriction by measuring the induced deflection of micromachined cantilever unimorph samples. Magnetostrictionmeasurements have been performed on as-deposited Fe–Ga and Fe–Ga–Al thin-film composition spreads. The thin-film Fe–Ga spreads display a similar compositional variation of magnetostriction as bulk. A previously undiscovered peak in magnetostriction at low Ga content was also observed and attributed to a maximum in the magnetocrystalline anisotropy. Magnetostrictive mapping of the Fe–Ga–Al ternary system reveals the possibility of substituting up to 8at.%Al in Fe70Ga30 without significant degradation of magnetostriction.


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Jan 2007

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Faculty Publications

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.


Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins Oct 1982

Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins

Dissertations and Theses

The primary goal of this research was to investigate the effects associated with the application of magnetic fields to single electrodes.