Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics

Magnetic anisotropy

Electrical and Computer Engineering Publications

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Thermal Effects On The Magnetic Properties Of Titanium Modified Cobalt Ferrite, Ikenna C. Nlebedim, David C. Jiles Jan 2015

Thermal Effects On The Magnetic Properties Of Titanium Modified Cobalt Ferrite, Ikenna C. Nlebedim, David C. Jiles

Electrical and Computer Engineering Publications

The temperature dependence of the magnetic properties of titanium modified cobalt ferrite is presented. The change of maximum magnetization obtained at H ≈ 2.4 MA/m between any two temperatures increases systematically with composition, which is desirable for applications in devices. Variation in magnetocrystalline anisotropy and coercivity were different from previous studies on cation substituted cobalt ferrite. At lower concentrations, the effect of lower thermal energy dominated the effect of non-magnetic cation substitutions in controlling the anisotropy.The reverse was the case at higher concentrations. The temperature dependence of coercivity is dominated by the contribution of magnetocrystalline anisotropy to coercivity ...


Structural, Magnetic, And Magnetoelastic Properties Of Magnesium Substituted Cobalt Ferrite, Cajetan Ikenna Nlebedim, Ravi L. Hadimani, Ruslan Prozorov, David C. Jiles Jan 2013

Structural, Magnetic, And Magnetoelastic Properties Of Magnesium Substituted Cobalt Ferrite, Cajetan Ikenna Nlebedim, Ravi L. Hadimani, Ruslan Prozorov, David C. Jiles

Electrical and Computer Engineering Publications

The effects of substituting Mg on the structural, magnetic, and magnetostrictive properties ofcobalt ferrite have been investigated. Comparable values of lattice parameter were obtained for the Mg-substituted samples. Saturation magnetization continuously decreased with increase inMg concentration. Peak-to-peak magnetostriction amplitude and strain sensitivity had a similar dependence on Mg concentration.