Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason Hattrick-Simpers, D. Banerjee, Y. Liu, Z. Wang, J. Liu, S. Lofland, D. Josell, I. Takeuchi Mar 2015

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason Hattrick-Simpers, D. Banerjee, Y. Liu, Z. Wang, J. Liu, S. Lofland, D. Josell, I. Takeuchi

Jason R. Hattrick-Simpers

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced ...


Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. Wang, J. Liu, S. Lofland, Somdev Tyagi, J. Freeland, D. Giubertoni, M. Bersani, M. Anderle Mar 2015

Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. Wang, J. Liu, S. Lofland, Somdev Tyagi, J. Freeland, D. Giubertoni, M. Bersani, M. Anderle

Jason R. Hattrick-Simpers

We have fabricated Fe∕Sm–Co bilayers with gradient Fe thicknesses in order to systematically study the dependence of exchange coupling on the thickness of the Fe layer. The Fe layer was deposited at two different temperatures (150 and 300°C) to study the effect of deposition temperature on the exchange coupling. Magneto-optical Kerr effect and x-ray magnetic circular dichroism (XMCD) have been employed as nondestructive rapid characterization tools to map the magnetic properties of the gradient samples. Systematic enhancement in exchange coupling between the soft layer and the hard layer is observed as the soft layer thickness is decreased ...


Thermal Effects On The Magnetic Properties Of Titanium Modified Cobalt Ferrite, Ikenna C. Nlebedim, David C. Jiles Jan 2015

Thermal Effects On The Magnetic Properties Of Titanium Modified Cobalt Ferrite, Ikenna C. Nlebedim, David C. Jiles

Electrical and Computer Engineering Publications

The temperature dependence of the magnetic properties of titanium modified cobalt ferrite is presented. The change of maximum magnetization obtained at H ≈ 2.4 MA/m between any two temperatures increases systematically with composition, which is desirable for applications in devices. Variation in magnetocrystalline anisotropy and coercivity were different from previous studies on cation substituted cobalt ferrite. At lower concentrations, the effect of lower thermal energy dominated the effect of non-magnetic cation substitutions in controlling the anisotropy.The reverse was the case at higher concentrations. The temperature dependence of coercivity is dominated by the contribution of magnetocrystalline anisotropy to coercivity ...


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi Jan 2009

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi

Faculty Publications

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced ...


Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason R. Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. L. Wang, J. P. Liu, S. E. Lofland, Somdev Tyagi, J. W. Freeland, D. Giubertoni, M. Bersani, M. Anderle Jan 2005

Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason R. Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. L. Wang, J. P. Liu, S. E. Lofland, Somdev Tyagi, J. W. Freeland, D. Giubertoni, M. Bersani, M. Anderle

Faculty Publications

We have fabricated Fe∕Sm–Co bilayers with gradient Fe thicknesses in order to systematically study the dependence of exchange coupling on the thickness of the Fe layer. The Fe layer was deposited at two different temperatures (150 and 300°C) to study the effect of deposition temperature on the exchange coupling. Magneto-optical Kerr effect and x-ray magnetic circular dichroism (XMCD) have been employed as nondestructive rapid characterization tools to map the magnetic properties of the gradient samples. Systematic enhancement in exchange coupling between the soft layer and the hard layer is observed as the soft layer thickness is decreased ...


Effects Of Fatigue-Induced Changes In Microstructure And Stress On Domain Structure And Magnetic Properties Of Fe–C Alloys, Chester C.H. Lo, F. Tang, S. B. Biner, David C. Jiles May 2000

Effects Of Fatigue-Induced Changes In Microstructure And Stress On Domain Structure And Magnetic Properties Of Fe–C Alloys, Chester C.H. Lo, F. Tang, S. B. Biner, David C. Jiles

Ames Laboratory Publications

A study of the effects of microstructural changes on domain structure and magnetic properties as a result of fatigue has been made on Fe–C alloys subjected to either cold work, stress-relief annealing, or heat treatment that produced a ferritic/pearlitic structure. The magnetic properties varied with stress cycling depending on the initial condition of the samples. Variations in coercivity in the initial stage of fatigue were closely related to the changes in dislocation structure. In the intermediate stage of fatigue the observed refinement of domain structures was related to the development of dislocation cell structures and formation of slip ...


Monitoring Fatigue Damage In Materials Using Magnetic Measurement Techniques, Chester C.H. Lo, F. Tang, Y. Shi, David C. Jiles, S. B. Biner Apr 1999

Monitoring Fatigue Damage In Materials Using Magnetic Measurement Techniques, Chester C.H. Lo, F. Tang, Y. Shi, David C. Jiles, S. B. Biner

Center for Nondestructive Evaluation Publications

Measurements of hysteresis and Barkhausen effect (BE) have been made on 0.1 wt % C Fe–C alloys subjected to strain-controlled fatigue at various strain amplitudes. A relationship between the fatigue lifetime and strain amplitude was observed. The hysteresis properties of the samples cycled at different strain amplitudes were found to vary systematically with expended fatigue life. These properties showed significant changes in the initial and final stages of fatigue, while between these stages they remained stabilized. In the stable stage the remanence was found to decrease, whereas the coercivity increased with increasing strain amplitude. Variations in BE signal during ...


Finite Element Analysis Of The Influence Of A Fatigue Crack On Magnetic Properties Of Steel, Y. Shi, David C. Jiles Jun 1998

Finite Element Analysis Of The Influence Of A Fatigue Crack On Magnetic Properties Of Steel, Y. Shi, David C. Jiles

Center for Nondestructive Evaluation Publications

Fatigue can affect the magnetic properties of materials due to microstructural changes. Previous investigations have shown that several structure sensitive magnetic properties, such as coercivityHc and remanenceBr, changed systematically as a result of fatigue. When approaching failure the accumulated changes in microstructure resulted in the occurrence of fatigue cracks and the magnetic properties showed dramatic changes which mainly resulted from the geometrical changes in samples due to the cracks. It was found that the remanenceBr followed the changes in stress, while the coercivityHc sometimes showed different trends. In this article the influence of the size and the position of a ...


Modeling Of Permanent Magnets: Interpretation Of Parameters Obtained From The Jiles–Atherton Hysteresis Model, L. H. Lewis, J. Gao, David C. Jiles, D. O. Welch Apr 1996

Modeling Of Permanent Magnets: Interpretation Of Parameters Obtained From The Jiles–Atherton Hysteresis Model, L. H. Lewis, J. Gao, David C. Jiles, D. O. Welch

Ames Laboratory Publications

The Jiles–Atherton theory is based on considerations of the dependence of energy dissipation within a magnetic material resulting from changes in its magnetization. The algorithm based on the theory yields five computed model parameters, M S , a, α, k, and c, which represent the saturation magnetization, the effective domain density, the mean exchange coupling between the effective domains, the flexibility of domain walls and energy‐dissipative features in the microstructure, respectively. Model parameters were calculated from the algorithm and linked with the physical attributes of a set of three related melt‐quenched permanent magnets based on the Nd2 ...


Estimation Of Fatigue Exposure From Magnetic Coercivity, Z. J. Chen, David C. Jiles, J. Kameda May 1994

Estimation Of Fatigue Exposure From Magnetic Coercivity, Z. J. Chen, David C. Jiles, J. Kameda

Ames Laboratory Publications

An investigation of the effects of fatigue on A533B steel under constant load amplitude is reported in this paper. It was found that the plastic strain of the sample accumulated logarithmically with the number of stress cycles after initial fatigue softening. Based on the fact that plastic strain is often linearly related to the coercivity of material, at least for small changes of H c , a phenomenological relationship has been developed and tested to correlate the number of stress cycles to this magnetic parameter. This result represents the first successful attempt to relate the fatigue exposure directly to a magnetic ...


A Model For Hysteretic Magnetic Properties Under The Application Of Noncoaxial Stress And Field, Martin J. Sablik, S. W. Rubin, L. A. Riley, David C. Jiles, David A. Kaminski, S. B. Biner Jul 1993

A Model For Hysteretic Magnetic Properties Under The Application Of Noncoaxial Stress And Field, Martin J. Sablik, S. W. Rubin, L. A. Riley, David C. Jiles, David A. Kaminski, S. B. Biner

Center for Nondestructive Evaluation Publications

Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The ...