Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto Aug 2019

Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto

Graduate Theses and Dissertations

The description of polarization states of laser light as linear, circular polarization within the paraxial scalar wave approximation is adequate for most applications. However, this description falls short when considering laser light as an electromagnetic wave satisfying Maxwell's equations. An electric field with a constant unit vector for direction of the field and a space dependent complex scalar amplitude in the paraxial wave approximation does not satisfy Maxwell equations which, in general, requires all three Cartesian components of electric and magnetic fields associated for a nonzero laser beam to be nonzero.

Physical observation of passing a linearly polarized laser through …


Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy May 2019

Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy

Graduate Theses and Dissertations

The aim of this research is to investigate and characterize the quality of commercially obtained gallium nitride (GaN) on sapphire substrates that have been grown using hydride vapor phase epitaxy (HVPE). GaN substrates are the best choice for optoelectronic applications because of their physical and electrical properties. Even though HVPE GaN substrates are available at low-cost and create the opportunities for growth and production, these substrates suffer from large macro-scale defects on the surface of the substrate.

In this research, four GaN on sapphire substrates were investigated in order to characterize the surface defects and, subsequently, understand their influence on …


Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista May 2019

Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista

Electrical Engineering Undergraduate Honors Theses

A THz photoconductive antenna consists of antenna pads laid over a photoconductive substrate. These types of antennas are excited through the application of an optical pump (laser), which generates carriers inside the semiconductor. The acceleration and recombination of these carriers produce photocurrent that excites the antenna and generates THz pulse. This thesis focuses on analyzing the optical response of a photoconductive antenna, which consist of the interaction of the incident electric field of a laser pump with the radiating device. It develops the amplitude modulation process of a plane wave of light into a laser pump. It also takes into …