Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Aug 2016

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Electro-Optics and Photonics Faculty Publications

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second ...


Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb Jun 2016

Phase Gradient Algorithm Method For 3-D Holographic Ladar Imaging, Jason W. Stafford, Bradley D. Duncan, David J. Rabb

Electro-Optics and Photonics Faculty Publications

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be ...