Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali Jan 2011

Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in ...


Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski Jan 2004

Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell’s equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere’s law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.


Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin Jan 2004

Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

A finite-difference frequency-domain (FDFD) method is applied for photonic band gap calculations. The Maxwell’s equations under generalized coordinates are solved for both orthogonal and non-orthogonal lattice geometries. Complete and accurate band gap information is obtained by using this FDFD approach. Numerical results for 2D TE/TM modes in square and triangular lattices are in excellent agreements with results from plane wave method (PWM). The accuracy, convergence and computation time of this method are also discussed.


Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The electron pulse broadening and energy spread, caused by space charge effects, in a photoelectron gun are studied analytically using a fluid model. The model is applicable in both the photocathode-to-mesh region and the postanode electron drift region. It is found that space charge effects in the photocathode-to-mesh region are generally unimportant even for subpicosecond pulses. However, because of the long drift distance, electron pulse broadening due to space charge effects in the drift region is usually significant and could be much larger than the initial electron pulse duration for a subpicosecond electron pulse. Space charge effects can also lead ...


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results ...


Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali Jan 1997

Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The melting and solidification of Pb thin films on pyrolytic graphite are investigated in situ by reflection high-energy electron diffraction. Thin films with thicknesses of 4-150 monolayers are investigated. The surface morphology of the thin films were studied by scanning electron microscopy. Superheating of the Pb thin films by 4±2 to 12±2 K is observed from diffraction intensity measurements. Upon cooling the substrate, the Pb on graphite is seen to supercool by ∼69±4 K.


Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali Jan 1996

Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Measurement of the surface mean-square atomic vibrational amplitude, or equivalently the surface Debye temperature, with reflection high-energy electron diffraction is discussed. Low-index surfaces of lead are used as examples. Particular details are given about the temperature-dependent diffraction pattern of Pb(100) in the Debye-Waller region. The use of reflection high-energy electron diffraction for measurement of the substrate surface temperature in thin-film deposition chambers is suggested. © 1996 American Institute of Physics.


Direct Measurements Of The Transport Of Nonequilibrium Electrons In Gold Films With Different Crystal Structures, T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suárez, W. E. Bron Jan 1993

Direct Measurements Of The Transport Of Nonequilibrium Electrons In Gold Films With Different Crystal Structures, T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suárez, W. E. Bron

Electrical & Computer Engineering Faculty Publications

The transport of femtosecond-laser-excited nonequilibrium electrons across polycrystalline and single-crystalline gold films has been investigated through time-of-flight measurements. The thicknesses of the films range from 25 to 400 nm. Ballistic electrons as well as electrons interacting with other electrons and/or with the lattice have been observed. The ballistic component dominates the transport in the thinner films, whereas the interactive transport mechanism is dominant at the upper end of the thickness range. A slower effective velocity of the interactive component is observed in the polycrystalline samples, and is assumed to arise from the presence of grain boundaries. The reflection coefficient ...