Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Physics-Based Imaging Methods For Terahertz Nondestructive Evaluation Applications, Gabriel Paul Kniffin May 2016

Physics-Based Imaging Methods For Terahertz Nondestructive Evaluation Applications, Gabriel Paul Kniffin

Dissertations and Theses

Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for …


Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano Oct 2013

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano

Dissertations and Theses

The kinematics and dynamics for plane wave optics are derived for a massive electrodynamic field by utilizing Proca's theory. Atomic spectroscopy is also examined, with the focus on the 21 cm radiation due to the hyperfine structure of hydrogen. The modifications to Snell's Law, the Fresnel formulas, and the 21 cm radiation are shown to reduce to the familiar expressions in the limit of zero photon mass.


A Lagrangian For A System Of Two Dyons, Rainer Georg Thierauf Jan 1988

A Lagrangian For A System Of Two Dyons, Rainer Georg Thierauf

Dissertations and Theses

Maxwell's equations for the electromagnetic field are symmetrized by introducing magnetic charges into the formalism of electrodynamics. The symmetrized equations are solved for the fields and potentials of point particles. Those potentials, some of which are found to be singular along a line, are used to formulate the Lagrangian for a system of two dyons (particles with both electric and magnetic charge). The equations of motion are derived from the Lagrangian. It is shown that the dimensionality constants k and k * , which we r e introduced to define the units of the electromagnetic fields, have to be equal …


Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins Oct 1982

Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins

Dissertations and Theses

The primary goal of this research was to investigate the effects associated with the application of magnetic fields to single electrodes.