Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu Jan 2013

Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu

Weiqiang Chen

Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. A simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces by using photolithography and reactive ion etching is reported. It is demonstrated that local nanoroughness as a biophysical cue could regulate a diverse array of NIH/3T3 fi broblast behaviors, including cell morphology, adhesion, proliferation, migration, and cytoskeleton contractility. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo ...


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type ...


Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev Jan 2010

Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev

Weiqiang Chen

We have demonstrated that a thermal annealing treatment can reduce the optical losses in ultrathin, ultrasmooth, silver films deposited on a Ge wetting layer to values as low as the bulk material value and at the same time maintain an ultrasmooth surface. The annealing effect is sensitive to the annealing temperature and time, both of which should be carefully controlled. This annealing treatment is also effective for Ag–SiO2 multilayer composite films.


Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva Jan 2010

Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva

Weiqiang Chen

We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses are observed. Going forward, it appears that multilayer metal–dielectric designs are more suitable for sub-diffraction imaging applications because they ...


Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev Jan 2010

Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev

Weiqiang Chen

We have studied the surface-smoothing effect of an ultrathin germanium (Ge) layer on silver (Ag)-silica (SiO2) nanocomposite films for superlensing applications. Our experimental results indicate that inserting a thin Ge layer below the silver-silica composite films can reduce the final surface root-mean-squared (RMS) roughness to under 1 nm. Additionally, the metal nanostructure plays a role in both the smoothing effect and the optical properties of the nanocomposite films. Our experimental results show that the Bruggeman effective medium theory (EMT) is not sufficiently accurate to describe some properties of our nanocomposite films. In addition to the constituent materials and their ...