Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2009

University of Dayton

Articles 1 - 4 of 4

Full-Text Articles in Physics

Anomaly Detection In Hyperspectral Imagery: Comparison Of Methods Using Diurnal And Seasonal Data, Patrick C. Hytla, Russell C. Hardie, Michael T. Eismann, Joseph Meola Sep 2009

Anomaly Detection In Hyperspectral Imagery: Comparison Of Methods Using Diurnal And Seasonal Data, Patrick C. Hytla, Russell C. Hardie, Michael T. Eismann, Joseph Meola

Electrical and Computer Engineering Faculty Publications

The use of hyperspectral imaging is a fast growing field with many applications in the civilian, commercial and military sectors. Hyperspectral images are typically composed of many spectral bands in the visible and infrared regions of the electromagnetic spectrum and have the potential to deliver a great deal of information about a remotely sensed scene. One area of interest regarding hyperspectral images is anomaly detection, or the ability to find spectral outliers within a complex background in a scene with no a priori information about the scene or its specific contents. Anomaly detectors typically operate by creating a statistical background …


Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla Aug 2009

Scene-Based Nonuniformity Correction With Reduced Ghosting Using A Gated Lms Algorithm, Russell C. Hardie, Frank Orion Baxley, Brandon J. Brys, Patrick C. Hytla

Electrical and Computer Engineering Faculty Publications

In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that …


Design Of Acousto-Optic Chaos Based Secure Free-Space Optical Communication Links, Anjan K. Ghosh, Pramode K. Verma, Samuel Cheng, Robert C. Huck, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi Aug 2009

Design Of Acousto-Optic Chaos Based Secure Free-Space Optical Communication Links, Anjan K. Ghosh, Pramode K. Verma, Samuel Cheng, Robert C. Huck, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi

Electrical and Computer Engineering Faculty Publications

We discuss the design of an acousto-optic cell based free space optical communication link where the data beam is made secure through chaos encryption. Using external signal modulation of the diffracted light from a hybrid acousto-optic cell chaos (or directly via incorporation in the sound-cell driver's bias voltage) encryption of data is possible. We have shown numerically that decryption of the encoded data is possible by using an identical acousto-optic system in the receiver.


Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert Jan 2009

Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert

Electrical and Computer Engineering Faculty Publications

Generalized spectroscopic ellipsometry determines the principal monoclinic optical constants of thin films consisting of slanted titanium nanocolumns deposited by glancing angle deposition under 85° incidence and tilted from the surface normal by 47°. Form birefringence measured for wavelengths from 500 to 1000 nm renders the Ti nanocolumns monoclinic absorbing crystals with c-axis along the nanocolumns, b-axis parallel to the film interface, and 67.5° monoclinic angle between the aand c-axes. The columnar thin film reveals anomalous optical dispersion, extreme birefringence, strong dichroism, and differs completely from bulk titanium. Characteristic bulk interband transitions are absent in the spectral range investigated.