Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

2012

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 101

Full-Text Articles in Physics

Synthesis And Characterization Of Copper Nanoparticles And Copper-Polymer Nanocomposites For Plasmonic Photovoltaic Applications, Sabastine Chukwuemeka Ezugwu Dec 2012

Synthesis And Characterization Of Copper Nanoparticles And Copper-Polymer Nanocomposites For Plasmonic Photovoltaic Applications, Sabastine Chukwuemeka Ezugwu

Electronic Thesis and Dissertation Repository

Deposition techniques for the fabrication of metal nanostructures influence their morphological properties, which in turn control their optical behavior. Here, copper nanoparticles (np-Cu’s) were grown using a deposition system that was specifically set up during this work, and is based on a radio frequency (RF) sputtering source that can operate at high temperature and under bias voltage. The effect of deposition conditions (RF power, chamber pressure and substrate bias voltage) on RF sputtered np-Cu’s using RF sputtering has been studied. The study included a comparison between the morphological and optical properties of as-grown np-Cu’s and thermally treated samples. The characterization …


Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal Dec 2012

Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO3, we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity …


Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun Dec 2012

Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun

Doctoral Dissertations

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials because they are intimately connected to charge, structure, and magnetism, and a quantitative analysis of their behavior can reveal microscopic aspects of chemical bonding and spin-phonon coupling. To investigate these effects, we measured infrared vibrational properties of bulk and nanoscale MoS2 [molybdenum disulfide], MnO [manganese(II) oxide], and CoFe2O4 [cobalt iron oxide]. From an analysis of frequencies, oscillator strengths, and high-frequency dielectric constants, we extracted Born and local effective charges, and polarizability for MoS2 and MnO. For MoS2 nanoparticles, in …


Condensed Matter From Gauge/Gravity Duality, Jason Edward Therrien Dec 2012

Condensed Matter From Gauge/Gravity Duality, Jason Edward Therrien

Doctoral Dissertations

Currently strongly coupled systems present the greatest challenge to theoretical physics. For years conventional methods of approach have failed to describe these systems analytically. In recent years it has been shown that there is a duality between weakly coupled and strongly coupled systems, the Gauge Theory/Gravity Duality. In this dissertation I will discuss how the AdS/CFT is used to describe strongly coupled condensed matter systems as well as present the work done by the author and collaborators.


Growth And Characterization Of Hexagonal Lu-Fe-O Multiferroic Thin Films, Wenbin Wang Dec 2012

Growth And Characterization Of Hexagonal Lu-Fe-O Multiferroic Thin Films, Wenbin Wang

Doctoral Dissertations

In the quest for new types of information processing and storage, complex oxides stand out as one of the most promising material classes. The multiple functionalities of complex oxides naturally arise from the delicate energy balance between the various forms of order (structural, electronic, magnetic). In particular, multiferroic and magnetoelectric oxides which simultaneously exhibit more than one type of ferroic orders have many advantages over existing materials. Widespread practical applications will require a single-phase multiferroic material with a transition temperature that lies considerably above room temperature, large electric and magnetic polarizations, and strong coupling between ferroic orders.

Recently, multiferroic LuFe …


Structure And Dynamics Of High Temperature Superconductors, Jennifer Lynn Niedziela Dec 2012

Structure And Dynamics Of High Temperature Superconductors, Jennifer Lynn Niedziela

Doctoral Dissertations

High temperature superconductivity in iron based compounds has presented a series of complex problems to condensed matter physics since being discovered in 2008. The stalwart basis of condensed matter physics is the “strength in numbers" aspect of crystalline periodicity. Perfect crystalline periodicity has made possible the reduction of the questions of structural and electronic properties to single dimensions, increasing the tractability of these problems. Nevertheless, modern complex materials stretch these assumptions to their limits, and it is at this point where our work starts. Using neutron and x-ray scattering, we have conducted a series of studies on the structural disorder …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani Nov 2012

Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The electronic structures, many-body interactions and Fermi surface topologies of Au/Mo(112) were investigated in detail and were found to play important roles in the newly discovered order-disorder structural phase transition of the system. First, the high-resolution angle-resolved photoemission spectroscopy was utilized to characterize the electronic band structure of Mo(112) in far greater details than before. This elucidated the existence of several surface-derived states and their dispersion relations in high precisions near the Fermi level, as well as the symmetries of the bulk and surface electronic states, which are in good quantitative agreement with the ab-initio calculations. Such thorough understanding of …


Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, (...), M. M. Qazilbash, Et Al. Nov 2012

Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, (...), M. M. Qazilbash, Et Al.

Arts & Sciences Articles

We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin (∼λ/65) vanadium dioxide (VO2) layer on sapphire, temperature tuned in the vicinity of the VO2 insulator-to-metal phase transition, leading to 99.75% absorption at λ = 11.6 μm. The structural simplicity and large tuning range (from ∼80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers.


The Behavior Of A Falling Particle In A Funnel, Tahani Hassn Aldahri Oct 2012

The Behavior Of A Falling Particle In A Funnel, Tahani Hassn Aldahri

Electronic Thesis and Dissertation Repository

Recent theoretical work has suggested that a frictional, inelastic, spherical particle falling under gravity through a symmetric funnel will display interesting behavior as a function of the angle of the funnel walls. We have studied this system experimentally, using high-speed video to record the particle trajectories. By analyzing the video images, we have analyzed the time the ball spends in the funnel and its energy loss as functions of the angle of the walls with respect to the horizontal. The coefficient of restitution was also varied by using different balls and funnel materials. We found some similarities and differences between …


Hohenberg-Kohn Theorem Including Electron Spin, Xiao-Yin Pan, Viraht Sahni Oct 2012

Hohenberg-Kohn Theorem Including Electron Spin, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn theorem is generalized to the case of a finite system of N electrons in external electrostatic epsilon(r) = -del nu(r) and magnetostatic B(r) = del x A(r) fields in which the interaction of the latter with both the orbital and spin angular momentum is considered. For a nondegenerate ground state a bijective relationship is proved between the gauge invariant density rho(r) and physical current density j(r) and the potentials {nu(r), A(r)}. The possible many-to-one relationship between the potentials {v(r), A(r)} and the wave function is explicitly accounted for in the proof. With the knowledge that the basic variables …


Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei Sep 2012

Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations. © 2012 American …


Influence Of Quantum Dot Structure On The Optical Properties Of Group Iv Materials Fabricated By Ion Implantation, Eric G. Barbagiovanni Sep 2012

Influence Of Quantum Dot Structure On The Optical Properties Of Group Iv Materials Fabricated By Ion Implantation, Eric G. Barbagiovanni

Electronic Thesis and Dissertation Repository

In nanostructures (NSs), to acquire a fundamental understanding of the electronic states by studying the optical properties is inherently complicated. A widely used simplification to this problem comes about by developing a model for a small scale representation of types of NSs and applying it to a hierarchy of fabrication methods. However, this methodology fails to account for structural differences incurred by the fabrication method that lead to differences in the optical properties. Proper modelling is realized by first considering the proper range of experimental parameters individually as inputs to a theoretical model and applying the correct parameters to the …


Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall Aug 2012

Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall

Electronic Thesis and Dissertation Repository

We present classical molecular dynamics (MD) simulations providing insight into the behaviour of water. We focus on confined water, the properties of which are often significantly different from the properties of bulk water.

First, we performed several simulations investigating the handling of long-range interactions in GROMACS [1], a MD simulation package. Selection of simulation protocols such as handling of long-range interactions is often overlooked, sometimes to the significant detriment of the final result [2, 3, 4]. Ensuring that the chosen simulation protocols are appropriate is a critical step in computer simulation.

Second, we performed MD simulations where water flowed between …


Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe Aug 2012

Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe

Dartmouth Scholarship

We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase (η=−π/2) where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing …


Investigation Of Vopcpho As An Acceptor Material For Bulk Heterojunction Solar Cells, Shahino Mah Abdullah Aug 2012

Investigation Of Vopcpho As An Acceptor Material For Bulk Heterojunction Solar Cells, Shahino Mah Abdullah

Shahino Mah Abdullah

In this study, we have successfully demonstrated a new system of donor–acceptor blend for bulk heterojunction solar cells of poly(3-hexylthiophene) (P3HT) by using vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) as acceptor material. A broad absorption over the whole visible range (450–750 nm) is achieved. Utilizing this blend system in solar cell fabrication, ITO/PEDOT:PSS/P3HT:VOPcPhO/Al solar cells have been fabricated and characterized in open air. A maximum power conversation efficiency up to 1.09% has been recorded. To confirm the charge transport, the electron and hole mobility of VoPcPhO has been measured. The results show that the VoPcPhO has bipolar transport and can act as an …


Ii-Vi Core-Shell Nanowires: Synthesis, Characterizations And Photovoltaic Applications, Kai Wang Aug 2012

Ii-Vi Core-Shell Nanowires: Synthesis, Characterizations And Photovoltaic Applications, Kai Wang

University of New Orleans Theses and Dissertations

The emergence of semiconducting nanowires as the new building blocks for photovoltaic (PV) devices has drawn considerable attention because of the great potential of achieving high efficiency and low cost. In special, nanowires with a coaxial structure, namely, core-shell structures have demonstrated significant advantages over other device configurations in terms of radial charge collection and cost reduction. In this dissertation, several core-shell nanowire structures, including ZnO/ZnSe, ZnO/ZnS, and CdSe/ZnTe, have been synthesized and the photovoltaic devices processed from a ZnO/ZnS core-shell nanowire array and a single CdSe/ZnTe core-shell nanowire have been demonstrated.

By combining the chemical vapor deposition and pulsed …


High Frequency Study Of Magnetic Nanostructures, Abhishek Srivastava Aug 2012

High Frequency Study Of Magnetic Nanostructures, Abhishek Srivastava

University of New Orleans Theses and Dissertations

The work in this thesis is divided in three parts. In part one we developed electrodeposition method of Nickel Nanowire in commercial AAO template in constant current (Galvanostatic) mode, further we tried to estimate the growth rate from theory, from saturation magnetization and direct measurement from SEM image.

In part two we focused on using the Vector Network Analyzer (VNA) to measure the Ferromagnetic Resonance (FMR))of various magnetic Nanowire arrays. We employed different measurement geometries using microstripline and coplanar waveguide as microwave transmission lines.

In part three our aim was to study the magnetic properties of complex ferromagnetic system, especially …


Characterization Of Magnetic Nanostructured Materials By First Order Reversal Curve Method, Denny R. Lenormand Aug 2012

Characterization Of Magnetic Nanostructured Materials By First Order Reversal Curve Method, Denny R. Lenormand

University of New Orleans Theses and Dissertations

The Interactions and magnetization reversal of Ni nanowire arrays and synthetic anit-ferromagnetic coupled thin film trilayers have been investigated through first order reversal curve (FORC) method. By using a quantitative analysis of the local interaction field profile distributions obtained from FORC, it has proven to be a powerful characterization tool that can reveal subtle features of magnetic interactions.


Electronic Transport In Thermoelectric Bismuth Telluride, Westly Nolting Aug 2012

Electronic Transport In Thermoelectric Bismuth Telluride, Westly Nolting

University of New Orleans Theses and Dissertations

An experimental investigation of the electronic transport properties of bismuth telluride nanocomposite materials is presented. The primary transport measurements are electrical conductivity, Seebeck coefficient and Hall effect. An experimental apparatus for measuring Hall effect and electrical conductivity was designed, constructed and tested. Seebeck coefficient measurements were performed on a commercial instrument. The Hall effect and Seebeck coefficient measurements are two of the most important tools for characterizing thermoelectric materials and are widely used in the semiconductor industry for determining carrier types, carrier concentration and mobility. Further, these transport parameters are used to determine the thermal to electrical conversion efficiency of …


Magnetic Excitations In The Iron Based Superconductors, Leland Weldon Harriger Aug 2012

Magnetic Excitations In The Iron Based Superconductors, Leland Weldon Harriger

Doctoral Dissertations

Presented within are neutron scattering studies detailing the spin dynamics of BaNi$_{x}$Fe$_{2-x}$As$_{2}$ for x = 0 (parent), 0.04 (underdoped), and 0.1 (optimal) dopings, and FeSe$_{x}$Te$_{1-x}$ for x = 0 (parent), 0.3 (underdoped), and 0.4 (optimal) dopings. These recently discovered Fe-based superconducting compounds are strikingly similar, in many respects, to the cuprate class of unconventional superconductors and share qualitatively similar phase diagrams consisting of a long range ordered magnetic ground state in the parents which, upon doping, is supplanted in favor of superconductivity. The dopings discussed herein allow us to tune through the phase diagram, beginning with long range ordered parents …


Study Of Local Structure, Stress And Dynamics In Disordered Materials Using Ab-Initio And Molecular Dynamics Simulation, Madhusudan Ojha Aug 2012

Study Of Local Structure, Stress And Dynamics In Disordered Materials Using Ab-Initio And Molecular Dynamics Simulation, Madhusudan Ojha

Doctoral Dissertations

Understanding the atomic structure and dynamics in structurally disordered systems has been a long-standing and most challenging problem in physics and material science. To begin with, it is difficult to describe disorder quantitatively and to differentiate the degree of disorder from one system to another. The majorities of experimental and theoretical approaches to the study of disordered systems are either transferred directly from the study of crystals or address the problem in the macroscopic scale where the atomic origin of behavior is obscured. First principle atomic level stresses and dynamic pair distribution functions described in this dissertation represent attempts to …


Iron Pnictides: Superconductivity In Multi-Orbital Systems, Andrew David Nicholson Aug 2012

Iron Pnictides: Superconductivity In Multi-Orbital Systems, Andrew David Nicholson

Doctoral Dissertations

This work focuses on the development and implementation of microscopic models as well as their numerical and analytical study to elucidate the properties of the iron pnictides. There are many first principle and phenomenological studies of these materials, but there is a need for unbiased numerical calculations following an approach similar to the one used in the study of the Hubbard and t-J models for the cuprates.

First a two orbital model for the pnictides, focusing on two hybridized Fe-d orbitals (dxz and dyz) is formulated, including hoppings between nearest and next nearest neighbors as well as on site Coulomb …


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato Aug 2012

Morphology-Properties Studies In Laser Synthesized Nanostructured Materials, Nozomi Shirato

Doctoral Dissertations

Synthesis of well-defined nanostructures by pulsed laser melting is an interesting subject from both a funda- mental and technological point of view. In this thesis, the synthesis and functional properties of potentially useful materials were studied, such as tin dioxide nanostructured arrays, which have potential applications in hydrogen gas sensing, and ferromagnetic Co nanowire and nanomagnets, which are fundamentally im- portant towards understanding magnetism in the nanoscale. First, the formation of 1D periodic tin dioxide nanoarrays was investigated with the goal of forming nanowires for hydrogen sensing. Experimental obser- vations combined with theoretical modeling successfully explained the mechanisms of structure …


Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe Aug 2012

Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe

Graduate Theses and Dissertations

A first-principles-based effective Hamiltonian scheme which incorporates coupling between ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3 alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO) soft mode) in the 50-75 cm-1 range for temperatures smaller than 200 K and for compositions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered FE and AFD motions is shown to be the cause of the additional mode and more insight into its nature is provided. This scheme is further used to reveal a field-induced anticrossing involving FE and AFD degrees of …


Incommensurate Spin Fluctuations In High-Transition Temperature Superconductors, Barrett Wells, Young Lee, Marc Kastner, Rebecca Christianson, Robert Birgeneau, Kazuyoshi Yamada, Yasuo Endoh, Gen Shirane Jul 2012

Incommensurate Spin Fluctuations In High-Transition Temperature Superconductors, Barrett Wells, Young Lee, Marc Kastner, Rebecca Christianson, Robert Birgeneau, Kazuyoshi Yamada, Yasuo Endoh, Gen Shirane

Rebecca J. Christianson

Neutron scattering experiments have revealed a fascinating interplay between the hole doping, the spin fluctuations, and the superconductivity of the cuprate superconductors. Recently, electrochemical techniques have been used to produce large single crystals of La2CuO4+ y, which has mobile oxygen dopants. Staging behavior of the excess oxygen has been demonstrated, and the low-energy spin fluctuations in stage 6 La2CuO4+ y have been measured. The spin fluctuations are incommensurate with the lattice and have spatial, energy, and temperature dependencies very much like those in La2− xSrxCuO4, with similar high transition temperature. This establishes the universality of the incommensurate spin fluctuations among …


Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada Jul 2012

Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada

Rebecca J. Christianson

Over the past decade, we have studied in detail the low-energy spin fluctuations in :a2−xSrxCuO4 for xbetween 0 and 0.18. Our experiments, as well as those by others, have revealed a fascinating interplay between the hole doping, the static and dynamic spin fluctuations and superconductivity. Recently, using electrochemical techniques, we have learned how to produce large single crystals of La2CuO4+y which are relatively homogenous. In this latter system, the dopants are characterized by annealed rather than quenched disorder. Furthermore, we have demonstrated staging behavior of the excess oxygen analogous to staging in intercalated graphite. We have now succeeded in carrying …


Numerical Study Of The Transition Metal Oxides And The Transport Properties Of Iron Pnictides, Shuhua Liang Jul 2012

Numerical Study Of The Transition Metal Oxides And The Transport Properties Of Iron Pnictides, Shuhua Liang

Doctoral Dissertations

Strongly correlated materials such as the manganites and iron pnictides are studied here with several computational techniques. Both types of materials contain transition metals. Thus, our computational models are based on the double exchange mechanism, the super exchange mechanism and the crystal field theory to describe the d electrons. In manganites, we focus on its multiferroic properties induced by the Dzyaloshinskii-Moriya interaction. In the BiFeO3 , we use classical Monte Carlo simulations to study the magnetic critical transition transition. In iron pnictides, we study the interplay between the Fermi surface orbital order and the ground state magnetic order.


Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi Jun 2012

Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi

Electronic Thesis and Dissertation Repository

The dependence of the magnetic hardness on the microstructure of magnetic solids is investigated, using a field theoretical approach, called the Magnetic Phase Field Crystal model. We constructed the free energy by extending the Phase Field Crystal (PFC) formalism and including terms to incorporate the ferromagnetic phase transition and the anisotropic magneto-elastic effects, i.e., the magnetostriction effect. Using this model we performed both analytical calculations and numerical simulations to study the coupling between the magnetic and elastic properties in ferromagnetic solids. By analytically minimizing the free energy, we calculated the equilibrium phases of the system to be liquid, non-magnetic …