Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Analysis Of Nonequilibrium Hcp Precipitate Growth In Fcc Matrices: Application To Al–Ag, Daniel Finkenstadt, Duane D. Johnson Nov 2009

Analysis Of Nonequilibrium Hcp Precipitate Growth In Fcc Matrices: Application To Al–Ag, Daniel Finkenstadt, Duane D. Johnson

Duane D. Johnson

Hexagonal-close-packed (hcp) γ-precipitates with large aspect ratios form rapidly in some face-centered cubic (fcc) solid-solutions. No model explains the observed time-dependent increase in aspect ratio, nor irregular intermediate growth shapes. We propose a nonequilibrium process involving trapezoidal offshoots (controlled only by energetics) that governs the growth behavior (kinetics) and yields nonequilibrium structures in agreement with observation. Then, combining nucleation theory and diffusion-limited growth both of secondary nuclei and ledges, we derive a general growth equation for γ-precipitates due to solute-segregation to precipitate–matrix interfaces that includes our modification of the Jones–Trivedi model for thickening to account for the slow growth of …


Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson Sep 2009

Optimal Site-Centered Electronic Structure Basis Set From A Displaced-Center Expansion: Improved Results Via A Priori Estimates Of Saddle Points In The Density, Aftab Alam, Duane D. Johnson

Duane D. Johnson

Site-centered, electronic-structure methods use an expansion inside nonoverlapping “muffin-tin” (MT) spheres plus an interstitial basis set. As the boundary separating the more spherical from nonspherical density between atoms, the “saddle-point” radii (SPR) in the density provide an optimal spherical region for expanding in spherical harmonics, as used in augmented plane wave, muffin-tin orbital, and multiple-scattering [Korringa, Kohn, and Rostoker (KKR)] methods. These MT-SPR guarantee unique, convex Voronoi polyhedra at each site, in distinction to Bader topological cells. We present a numerically fast, two-center expansion to find SPR a priori from overlapping atomic charge densities, valid also for disordered alloys. We …


Surface Geometry Of C60 On Ag(111), H. I. Li, K. Pussi, K. J. Hanna, Lin-Lin Wang, Duane D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. Mcgrath, R. D. Diehl Jul 2009

Surface Geometry Of C60 On Ag(111), H. I. Li, K. Pussi, K. J. Hanna, Lin-Lin Wang, Duane D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. Mcgrath, R. D. Diehl

Duane D. Johnson

The geometry of adsorbed C60 influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C60 monolayer, Ag(111)−(23√×23√)30°−C60, and related density functional theory calculations. The stable monolayer has C60 molecules in vacancies that result from the displacement of surface atoms. C60 bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C60 monolayers on close-packed metal surfaces.


Charge Transfer Assisted By Collective H-Bonding Network Dynamics, Omar F. Mohammed, Christina M. Othon, Oh-Hoon Kwon, Ahmed H. Zewail Jul 2009

Charge Transfer Assisted By Collective H-Bonding Network Dynamics, Omar F. Mohammed, Christina M. Othon, Oh-Hoon Kwon, Ahmed H. Zewail

Christina M Othon

Although there have been numerous studies of solvation, the role of solvent specific and collective interactions, especially for charge-transfer processes, remains difficult to unravel. Here, we report, using femtosecond fluorescence up-conversion and steady-state spectroscopic measurements, studies of well-designed single-sited formylperylene (FPe) in binary solvents. One of the solvents (methanol, MOH) can selectively hydrogen (H) bond to the carbonyl (C=O) site, while the other (acetonitrile, ACN) cannot, but both have similar polarity ( for MOH and for ACN). The results reveal that ultrafast charge transfer from the perylene unit to the carbonyl group of FPe is facilitated by site-specific H-bonding interactions …


Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson Jun 2009

Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson

Duane D. Johnson

Twinning is one of most prevalent deformation mechanisms in materials. Having established a quantitative theory to predict onset twinning stress τcrit in fcc elemental metals from their generalized planar-fault-energy (GPFE) surface, we exemplify its use in alloys where the Suzuki effect (i.e., solute energetically favors residing at and near planar faults) is operative; specifically, we apply it in Cu-xAl (x is 0, 5, and 8.3 at. %) in comparison with experimental data. We compute the GPFE via density-functional theory, and we predict the solute dependence of the GPFE and τcrit, in agreement with measured values. We show that τcrit correlates …


Solvation In Protein (Un)Folding: Effect Of Local And Bulk Dynamics In The Melittin Tetramer-Monomer Transition, Christina M. Othon, Oh-Hoon Kwon, Milo M. Lin, Ahmed H. Zewail May 2009

Solvation In Protein (Un)Folding: Effect Of Local And Bulk Dynamics In The Melittin Tetramer-Monomer Transition, Christina M. Othon, Oh-Hoon Kwon, Milo M. Lin, Ahmed H. Zewail

Christina M Othon

Protein structural integrity and flexibility are intimately tied to solvation. Here we examine the effect that changes in bulk and local solvent properties have on protein structure and stability. We observe the change in solvation of an unfolding of the protein model, melittin, in the presence of a denaturant, trifluoroethanol. The peptide system displays a well defined transition in that the tetramer unfolds without disrupting the secondary or tertiary structure. In the absence of local structural perturbation, we are able to reveal exclusively the role of solvation dynamics in protein structure stabilization and the (un)folding pathway. A sudden retardation in …


Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson Apr 2009

Bcc-To-Hcp Transformation Pathways For Iron Versus Hydrostatic Pressure: Coupled Shuffle And Shear Modes, J. B. Liu, Duane D. Johnson

Duane D. Johnson

Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd, the PES is described by coupled shear (ϵ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,ϵ). We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while …


Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D. Dec 2008

Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D.

Prof. Stephanie Tristram-Nagle Ph.D.

We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/ DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added …