Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Physics

Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme Dec 2009

Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme

Stephen Ducharme Publications

Among the ferroelectric thin films used in field-effect transistor devices; the ferroelectric copolymer of polyvinylidene fluoride PVDF –CH2–CF2–, with trifluoroethylene TrFE –CHF–CF2–, has distinct advantages, including low dielectric constant, low processing temperature, low cost, and compatibility with organic semiconductors. The operation of a metal-ferroelectric insulatorsemiconductor structure with PVDF-TrFE as the ferroelectric layer was analyzed and optimized by numerical solution of the Miller and McWhorter model. A model device consisting of 20 nm PVDF/TrFE on a 10-nm-thick high-k dielectric buffer exhibits a memory window of 5 V with an operating voltage of 15 V. The operating voltage can be reduced to …


Finite Temperature Effects In Magnetic Materials: Model And Ab Initio Studies, Aleksander L. Wysocki Nov 2009

Finite Temperature Effects In Magnetic Materials: Model And Ab Initio Studies, Aleksander L. Wysocki

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The understanding of finite temperature behavior of magnetic materials is of vital importance for spintronic applications. In this dissertation different theoretical techniques for studying magnetic thermodynamics of various materials are discussed. Cr2O3 is an antiferromagnetic insulator that was proposed to be a key component of new spintronic devices. The magnetic properties of Cr2O3 were studied using the LDA+U method. Magnetism was found to be very well described by the Heisenberg model. Subsequently, magnetic thermodynamics was explored using quantum pair cluster approximation. Overall, very good agreement with experiment was found for the ground state and …


Exchange Bias Training Effect In Magnetically Coupled Bilayers, Srinivas Polisetty Oct 2009

Exchange Bias Training Effect In Magnetically Coupled Bilayers, Srinivas Polisetty

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Interfaces in magnetically coupled bilayer heterostructures play a vital role in novel spintronics devices. Particularly, control of the interface spin structure enables the development of progressively down-scalable magnetic read-heads which are of major importance for non volatile magnetic recording media. Exchange bias and its accompanying training effect are fundamental magnetic coupling phenomena taking place at the interfaces of antiferromagnetic/ferromagnetic and hard/soft ferromagnetic bilayers. Here, in my thesis I present the experimental results of exchange bias training in the prototypical antiferromagnetic/ferromagnetic exchange bias system CoO/Co and the corresponding coupling and aging phenomena in the all ferromagnetic hard/soft bilayer CoPtCrB/CoCr. The latter …


Nanoscale Domain Patterns In Ultrathin Polymer Ferroelectric Films, Pankaj Sharma, Timothy J. Reece, Daniel W. Wu, Vladimir M. Fridkin, Stephen Ducharme, Alexei Gruverman Oct 2009

Nanoscale Domain Patterns In Ultrathin Polymer Ferroelectric Films, Pankaj Sharma, Timothy J. Reece, Daniel W. Wu, Vladimir M. Fridkin, Stephen Ducharme, Alexei Gruverman

Stephen Ducharme Publications

High-resolution studies of domain configurations in Langmuir–Blodgett films of ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), have been carried out by means of piezoresponse force microscopy (PFM). Changes in film thickness and morphology cause significant variations in polarization patterns. In continuous films and nanomesas with relatively low thickness/grain aspect ratio (<1/10), the relationship between the average domain size and thickness follows the Kittel law. Nanomesas with high aspect ratio (>1/5) exhibit significant deviations from this law, suggesting additional surface-energy-related mechanisms affecting the domain patterns. Polarization reversal within a single crystallite has been demonstrated and local switching parameters (coercive voltage and remnant piezoresponse) have been measured by monitoring the local hysteresis loops. Reliable control of polarization at the sub-grain level demonstrates …


Dielectric Nanocomposites: An Inside-Out Approach To Storing Electrostatic Energy, Stephen Ducharme Sep 2009

Dielectric Nanocomposites: An Inside-Out Approach To Storing Electrostatic Energy, Stephen Ducharme

Stephen Ducharme Publications

The ability to achieve high-energy densities is the central challenge in energy storage and recovery. A promising strategy for increasing energy storage is to use highperformance dielectric materials, such as highly polarizable nanoparticles or polymers, or nanocomposites of the two. In this issue, Kim et al. use a molecular coating and clever chemistry to combine oxide nanoparticles with a polymer matrix, thereby producing an improved nanocomposite dielectric. Some advantages and challenges of using nanocomposites as improved dielectric materials are presented in this Perspective.


Magnetoelectric Effect At The Srruo3/Batio3 (001) Interface: An Ab Initio Study, Manish K. Niranjan, John D. Burton, Julian P. Velev, Sitaram Jaswal, Evgeny Y. Tsymbal Aug 2009

Magnetoelectric Effect At The Srruo3/Batio3 (001) Interface: An Ab Initio Study, Manish K. Niranjan, John D. Burton, Julian P. Velev, Sitaram Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Ferromagnet/ferroelectric interface materials have emerged as structures with strong magnetoelectric coupling that may exist due to unconventional physical mechanisms. Here we present a first-principles study of the magnetoelectric effect at the ferromagnet/ferroelectric SrRuO3 /BaTiO3 (001) interface. We find that the exchange splitting of the spin-polarized band structure, and therefore the magnetization, at the interface can be altered substantially by reversal of the ferroelectric polarization in the BaTiO3. These magnetoelectric effects originate from the screening of polarization charges at the SrRuO3 /BaTiO3 interface and are consistent with the Stoner model for itinerant magnetism.


Tunneling Electroresistance In Ferroelectric Tunnel Junctions With A Composite Barrier, M. Ye. Zhuravlev, Yong Wang, S. Maekawa, Evgeny Y. Tsymbal Aug 2009

Tunneling Electroresistance In Ferroelectric Tunnel Junctions With A Composite Barrier, M. Ye. Zhuravlev, Yong Wang, S. Maekawa, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Tunneling electroresistance (TER) effect is the change in the electrical resistance of a ferroelectric tunnel junction (FTJ) associated with polarization reversal in the ferroelectric barrier layer. Here we predict that a FTJ with a composite barrier that combines a functional ferroelectric film and a thin layer of a nonpolar dielectric can exhibit a significantly enhanced TER. Due to the change in the electrostatic potential with polarization reversal, the nonpolar dielectric barrier acts as a switch that changes its barrier height from a low to high value. The predicted values of TER are giant and indicate that the resistance of the …


Polarization Switching Kinetics Of Ferroelectric Nanomesas Of Vinylidene Fluoride-Trifluoroethylene Copolymer, R. V. Gaynutdinov, O. A. Lysova, S. G. Yudin, A. L. Tolstikhina, A. L. Kholkin, V. M. Fridkin, Stephen Ducharme Jul 2009

Polarization Switching Kinetics Of Ferroelectric Nanomesas Of Vinylidene Fluoride-Trifluoroethylene Copolymer, R. V. Gaynutdinov, O. A. Lysova, S. G. Yudin, A. L. Tolstikhina, A. L. Kholkin, V. M. Fridkin, Stephen Ducharme

Stephen Ducharme Publications

The polarization switching kinetics of ferroelectric polymer nanomesas was investigated using piezoresponse force microscopy. The nanomesas were made by self-organization from Langmuir–Blodgett films of a 70% vinylidene fluoride and 30% trifluoroethylene copolymer. The polarization switching time exhibits an exponential dependence on reciprocal voltage that is consistent with nucleation-type switching dynamics.


Exchange Coupling At Cobalt/ Nickel Oxide Interfaces, Andrew G. Baruth Apr 2009

Exchange Coupling At Cobalt/ Nickel Oxide Interfaces, Andrew G. Baruth

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Spin arrangement at interfaces in layered magnetic materials is of vital importance to the emerging field of spintronics. Knowledge of how and why the interfacial spins behave in a certain way will aid in the development of future magnetic-based memories.

Much exploration has taken place in the interlayer exchange coupling (IEC) of ferromagnetic heterostructures with in-plane anisotropy. Only recently has it become apparent that to achieve the goals of increased areal density in magnetic memory a push for exploring magnetic materials with perpendicular magnetic anisotropy (PMA) must occur. An interesting and promising candidate for such a magnetic system is [Co/Pt]/NiO/[Co/Pt], …


Quantum Nature Of Two-Dimensional Electron Gas Confinement At Laalo3=Srtio3 Interfaces, Karolina Janicka, Julian P. Velev, Evgeny Y. Tsymbal Mar 2009

Quantum Nature Of Two-Dimensional Electron Gas Confinement At Laalo3=Srtio3 Interfaces, Karolina Janicka, Julian P. Velev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

We perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction. The attenuation length of the MIGS into the insulator is controlled by the lowest-decay-rate evanescent states of SrTiO3, as determined by its complex band structure. Our …


Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt Jan 2009

Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate spin-charge coupling in multiferroic oxides, we measured the optical properties of BiFeO3. Although the direct 300 K charge gap is observed at 2.67 eV, absorption onset actually occurs at much lower energy with Fe3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. We employ the sensitivity of these magnon sidebands to map out the magnetic-fieldtemperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near …


Start The Presses, Stephen V. Ducharme, Alexei Gruverman Jan 2009

Start The Presses, Stephen V. Ducharme, Alexei Gruverman

Stephen Ducharme Publications

A simple nanoimprinting method creates arrays of ferroelectric polymer structures suitable for low-cost, non-volatile memories. With the development of nanoimprinted high-quality ferroelectric nanomesa arrays, it seems that we now have all the necessary ingredients to print inexpensive, disposable organic memory chips.


First-Principles Studies Of A Two-Dimensional Electron Gas At The Interface In Ferroelectric Oxide Heterostructures, Yong Wang, Manish K. Niranjan, Sitaram Jaswal, Evgeny Y. Tsymbal Jan 2009

First-Principles Studies Of A Two-Dimensional Electron Gas At The Interface In Ferroelectric Oxide Heterostructures, Yong Wang, Manish K. Niranjan, Sitaram Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The discovery of a two-dimensional electron gas (2DEG) at the interface between two insulating oxides has recently stimulated intense research activity in this field. The 2DEG has unique properties that are promising for applications in all-oxide electronic devices.


Universality Of The Surface Magnetoelectric Effect In Half-Metals, Chun-Gang Duan, Ce-Wen Nan, Sitaram S. Jaswal, Evgeny Y. Tsymbal Jan 2009

Universality Of The Surface Magnetoelectric Effect In Half-Metals, Chun-Gang Duan, Ce-Wen Nan, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

An electric field applied to a ferromagnetic metal produces a surface magnetoelectric effect originating from the spin-dependent screening of the electric field which results in a change in the surface magnetization of the ferromagnet.


Oxide Tunnel Junctions Supporting A Two-Dimensional Electron Gas, John D. Burton, Julian P. Velev, Evgeny Y. Tsymbal Jan 2009

Oxide Tunnel Junctions Supporting A Two-Dimensional Electron Gas, John D. Burton, Julian P. Velev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The discovery of a two-dimensional electron gas (2DEG) at the interface between insulating oxides has led to a well-deserved level of excitement due to possible applications as “in-plane” all-oxide nanoelectronics. Here we expand the range of possibilities to the realm of “out-of-plane” nanoelectronics by examining such all-oxide heterostructures as barriers in tunnel junctions.


Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt Jan 2009

Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt

Xiaoshan Xu Papers

We measured the low-lying crystal field levels of Nd3+ in Nd3Ga5SiO14 via magneto-optical spectroscopy and employed the extracted energies, magnetic moments, and symmetries to analyze the magnetic properties and test the spin liquid candidacy of this material. The exchange interaction is surprisingly small, a discovery that places severe constraints on models used to describe the ground state of this system. Further, it demonstrates the value of local-probe photophysical techniques for rare-earthcontaining materials where bulk property measurements can be skewed by low-lying electronic structure.


Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan Jan 2009

Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan

Xiaoshan Xu Papers

The interplay between spin waves (magnons) and electronic structure in materials leads to the creation of additional bands associated with electronic energy levels which are called magnon sidebands. The large difference in the energy scales between magnons (meV) and electronic levels (eV) makes this direct interaction weak and hence makes magnon sidebands difficult to probe. Linear light absorption and scattering techniques at low temperatures are traditionally used to probe these sidebands. Here we show that optical secondharmonic generation, as the lowest-order nonlinear process, can successfully probe the magnon sidebands at room temperature and up to 723 K in bismuth ferrite, …


Prediction Of A Spin-Polarized Two-Dimensional Electron Gas At The Laalo3/Euo(001) Interface, Yong Wang, Manish K. Niranjan, John D. Burton, Joonhee M. An, Kirill D. Belashchenko, Evgeny Y. Tsymbal Jan 2009

Prediction Of A Spin-Polarized Two-Dimensional Electron Gas At The Laalo3/Euo(001) Interface, Yong Wang, Manish K. Niranjan, John D. Burton, Joonhee M. An, Kirill D. Belashchenko, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

First-principles calculations predict the existence of a spin-polarized two-dimensional electron gas (2DEG) at the LaO/EuO interface in a LaAlO3/EuO(001) heterostructure. This polar interface favors electron doping into the Eu-5d conduction bands resulting in a 2DEG formed at the interface.


Prediction Of Electrically Induced Magnetic Reconstruction At The Manganite/Ferroelectric Interface, John D. Burton, Evgeny Y. Tsymbal Jan 2009

Prediction Of Electrically Induced Magnetic Reconstruction At The Manganite/Ferroelectric Interface, John D. Burton, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The control of magnetization via the application of an electric field, known as magnetoelectric coupling, is among the most fascinating and active research areas today. In addition to fundamental scientific interest, magnetoelectric effects may lead to new device concepts for data storage and processing. There are several known mechanisms for magnetoelectric coupling that include intrinsic effects in single-phase materials, strain-induced coupling in two-phase composites, and electronically driven effects at interfaces. Here we explore a different type of magnetoelectric effect at a ferromagnetic-ferroelectric interface: magnetic reconstruction induced by switching of electric polarization.


Prediction Of A Switchable Two-Dimensional Electron Gas At Ferroelectric Oxide Interfaces, Manish K. Niranjan, Yong Wang, Sitaram S. Jaswal, Evgeny Y. Tsymbal Jan 2009

Prediction Of A Switchable Two-Dimensional Electron Gas At Ferroelectric Oxide Interfaces, Manish K. Niranjan, Yong Wang, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The demonstration of a quasi-two-dimensional electron gas (2DEG) in LaAlO3=SrTiO3 heterostructures has stimulated intense research activity in recent years. The 2DEG has unique properties that are promising for applications in all-oxide electronic devices. For such applications it is desirable to have the ability to control 2DEG properties by external stimulus. Here, based on first-principles calculations we predict that all-oxide heterostructures incorporating ferroelectric constituents, such as KNbO3=ATiO3 (A = Sr, Ba, Pb), allow creating a 2DEG switchable between two conduction states by ferroelectric polarization reversal. The effect occurs due to the screening charge at …