Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physics

Making The Transition To Post-Quantum Cryptography, J. Simon Richard May 2023

Making The Transition To Post-Quantum Cryptography, J. Simon Richard

The Downtown Review

Without intervention, quantum computing could threaten the security of a large portion of our internet in the near future. However, solutions exist. This paper, which is intended for a general audience, provides a wider context for our current state of quantum-preparedness amid the transition from classical cryptosystems to post-quantum cryptosystems—cryptographic algorithms that can resist the attacks of quantum computers. It will also submit a possible way forward inspired by the actions taken around the globe to prevent the millennium (or Y2K) bug.


Establishing The Legal Framework To Regulate Quantum Computing Technology, Kaya Derose Jan 2023

Establishing The Legal Framework To Regulate Quantum Computing Technology, Kaya Derose

Catholic University Journal of Law and Technology

No abstract provided.


Quantum Computing For Nuclear Physics, Aikaterini Nikou Jan 2023

Quantum Computing For Nuclear Physics, Aikaterini Nikou

2023 REYES Proceedings

Nuclear physics can greatly advance by taking advantage of quantum computing. Quantum computing can play a pivotal role in advancing nuclear physics and can allow for the description of physical situations and problems that are prohibitive to solve using classical computing due to their complexity. Some of the problems whose complexity requires using quantum computing to describe are: interacting quantum many-body and Quantum Field Theory problems such as simulating strongly interacting fields such as Quantum Chromodynamics with physical time evolution, the determination of the shape/phase of a nucleus using the time evolution of an appropriated observable as well as identifying …


Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte Nov 2022

Compilation Optimizations To Enhance Resilience Of Big Data Programs And Quantum Processors, Travis D. Lecompte

LSU Doctoral Dissertations

Modern computers can experience a variety of transient errors due to the surrounding environment, known as soft faults. Although the frequency of these faults is low enough to not be noticeable on personal computers, they become a considerable concern during large-scale distributed computations or systems in more vulnerable environments like satellites. These faults occur as a bit flip of some value in a register, operation, or memory during execution. They surface as either program crashes, hangs, or silent data corruption (SDC), each of which can waste time, money, and resources. Hardware methods, such as shielding or error correcting memory (ECM), …


Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero Sep 2022

Quantum Error Detection Without Using Ancilla Qubits, Nicolas Guerrero

Theses and Dissertations

Quantum computers are beset by errors from a variety of sources. Although quantum error correction and detection codes have been developed since the 1990s, these codes require mid-circuit measurements in order to operate. In order to avoid these measurements we have developed a new error detection code that only requires state collapses at the end of the circuit, which we call no ancilla error detection (NAED). We investigate some of the mathematics behind NAED such as which codes can detect which errors. We then run NAED on three separate types of circuits: Greenberger–Horne–Zeilinger circuits, phase dependent circuits, and a quantum …


Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys May 2022

Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys

Doctoral Dissertations

The modeling and prediction of quantum mechanical phenomena is key to the continued development of chemical, material, and information sciences. However, classical computers are fundamentally limited in their ability to model most quantum effects. An alternative route is through quantum simulation, where a programmable quantum device is used to emulate the phenomena of an otherwise distinct physical system. Unfortunately, there are a number of challenges preventing the widespread application of quantum simulation arising from the imperfect construction and operation of quantum simulators. Mitigating or eliminating deleterious effects is critical for using quantum simulation for scientific discovery. This dissertation develops strategies …


Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov Jan 2022

Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov

Physics Faculty Publications

Single atoms in dipole microtraps or optical tweezers have recently become a promising platform for quantum computing and simulation. Here we report a detailed theoretical analysis of the physics underlying an implementation of a Rydberg two-qubit gate in such a system—a cornerstone protocol in quantum computing with single atoms. We focus on a blockade-type entangling gate and consider various decoherence processes limiting its performance in a real system. We provide numerical estimates for the limits on fidelity of the maximally entangled states and predict the full process matrix corresponding to the noisy two-qubit gate. We consider different excitation geometries and …


Characterization And Benchmarking Of Quantum Computers, Megan L. Dahlhauser May 2021

Characterization And Benchmarking Of Quantum Computers, Megan L. Dahlhauser

Doctoral Dissertations

Quantum computers are a promising technology expected to provide substantial speedups to important computational problems, but modern quantum devices are imperfect and prone to noise. In order to program and debug quantum computers as well as monitor progress towards more advanced devices, we must characterize their dynamics and benchmark their performance. Characterization methods vary in measured quantities and computational requirements, and their accuracy in describing arbitrary quantum devices in an arbitrary context is not guaranteed. The leading techniques for characterization are based on fine-grain physical models that are typically accurate but computationally expensive. This raises the question of how to …


Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa Mar 2021

Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa

Capstone and Graduation Projects

Quantum computing is one of the promising active areas in physics research. This is because of the potential of quantum algorithms to outperform their classical counterparts. Grover’s search algorithm has a quadratic speed-up compared to the classical linear search. The quantum simulation of Schrödinger’s equation has an exponential memory save-up compared to the classical simulation. In this thesis, the ideas and tools of quantum computing are reviewed. Grover’s algorithm is studied and simulated as an example. Using the Qiskit quantum computing library, a code to simulate Schrödinger’s equation for a particle in one dimension is developed, simulated locally, and run …


Error Detection In Quantum Algorithms, Simeon R. Hanks Mar 2021

Error Detection In Quantum Algorithms, Simeon R. Hanks

Theses and Dissertations

Quantum computers need to be able to control highly entangled quantum states in the presence of environmental perturbations that lead to errors in calculations. Progress in superconducting qubits has enabled the development of computers capable of running small quantum circuits. The current era of Noise Intermediate Scale Quantum computing has a high error rate. To alleviate this error rate we apply an encoding scheme that allows us to remove results with known errors improving the quality of our results. The encoding uses multiple qubits as a single logical qubit and balances the natural tendency of state-of-the-art quantum computers to decohere …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


Control Power In Perfect Controlled Teleportation Via Partially Entangled Channels, Xi-Han Li, Shohini Ghose Nov 2014

Control Power In Perfect Controlled Teleportation Via Partially Entangled Channels, Xi-Han Li, Shohini Ghose

Physics and Computer Science Faculty Publications

We analyze and evaluate perfect controlled teleportation via three-qubit entangled channels from the point of view of the controller. The key idea in controlled teleportation is that the teleportation is performed only with the participation of the controller. We calculate a quantitative measure of the controller's power and establish a lower bound on the control power required for controlled teleportation. We show that the maximally entangled Greenberger-Horne-Zeilinger state is a suitable channel for controlled teleportation of arbitrary single qubits-the controller's power meets the bound and the teleportation fidelity without the controller's permission is no better than the fidelity of a …


Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry Jun 2011

Symbolic Quantum Circuit Simplification In Sympy, Matthew Curry

Physics

In the field of quantum information science, one can design a series of quantum logic operations known as a circuit. Circuits are the basis for quantum computations in quantum computing. As circuits will most likely be designed from a logical standpoint, there could exist mathematical redundancies which will lead to a larger circuit than necessary. These redundancies are computationally expensive, and there is a need for them to be found and eliminated to simplify the circuit. We present our research on finding the rules for simplifying circuits and its implementation in SymPy.


Quantum Computing: Selected Internet Resources For Librarians, Researchers, And The Casually Curious, Jill Cirasella Apr 2009

Quantum Computing: Selected Internet Resources For Librarians, Researchers, And The Casually Curious, Jill Cirasella

Publications and Research

This article is an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news.


Quirky, Not Quacky: Quantum Computing For Librarians, Jill Cirasella Jan 2009

Quirky, Not Quacky: Quantum Computing For Librarians, Jill Cirasella

Publications and Research

This slideshow introduces librarians and non-scientists to the relatively young field of quantum computing.


Keeping Abreast Of Quantum News: Quantum Computing On The Web And In The Literature, Jill Cirasella Aug 2008

Keeping Abreast Of Quantum News: Quantum Computing On The Web And In The Literature, Jill Cirasella

Publications and Research

This appendix describes tools that can help you track developments in quantum computing.


Historical Bibliography Of Quantum Computing, Jill Cirasella Aug 2008

Historical Bibliography Of Quantum Computing, Jill Cirasella

Publications and Research

This bibliographic essay reviews seminal papers in quantum computing. Although quantum computing is a young science, its researchers have already published thousands of noteworthy articles, far too many to list here. Therefore, this appendix is not a comprehensive chronicle of the emergence and evolution of the field but rather a guided tour of some of the papers that spurred, formalized, and furthered its study.