Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Physics Faculty Publications

Physics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Diffusion Model Approach To Simulating Electron-Proton Scattering Events, Peter Devlin, Jian-Wei Qiu, Felix Ringer, Nobuo Sato Jan 2024

Diffusion Model Approach To Simulating Electron-Proton Scattering Events, Peter Devlin, Jian-Wei Qiu, Felix Ringer, Nobuo Sato

Physics Faculty Publications

Generative artificial intelligence is a fast-growing area of research offering various avenues for exploration in high-energy nuclear physics. In this work, we explore the use of generative models for simulating electron-proton collisions relevant to experiments like the Continuous Electron Beam Accelerator Facility and the future Electron-Ion Collider (EIC). These experiments play a critical role in advancing our understanding of nucleons and nuclei in terms of quark and gluon degrees of freedom. The use of generative models for simulating collider events faces several challenges such as the sparsity of the data, the presence of global or eventwide constraints, and steeply falling …


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …